
Lean
Development
and the

Predictability Paradox

Cutter Consortium
Executive Report

(Publication in August, 2003)

Mary Poppendieck

Copyright  2003 Poppendieck.LLC Executive Summary

Lean Development & the Predictability Paradox

Why is it that software development projects seems to have so much difficulty delivering
predictable outcomes? It seems that all too often projects are late or over budget or they
deliver the wrong system or all of the above. How can the predictability of software
development outcomes be increased? This executive report discusses a dilemma: in our
zeal to improve the reliability of software development, we have institutionalized
practices that decrease, rather than increase, the predictability of outcomes.

If this claim leaves you skeptical, consider that a decade ago, Japanese automakers
routinely developed new model cars in 1/3rd less time, for half the cost of Detroit
automakers. Only one sixth of the Japanese development programs were late, compared
one-half of the US programs. Yet the automobiles developed through these faster,
cheaper programs were very successful. For example, Toyota’s profitability from 1982
to 1998 was 1/3rd higher than Chrysler’s, twice that of Ford, and three times that of
General Motors.

Japanese automakers use concurrent engineering to develop products. Light on process
and heavy on communication, concurrent engineering has been widely adopted as the
preferred vehicle development approach in recent years. The paradox of concurrent
engineering is that development starts as soon as a vehicle concept is approved. It
proceeds at an aggressive pace, even while multiple options are explored. And yet,
commitment is delayed as long as possible. The result? Better quality, lower cost, faster
response to the market, and more predictable outcomes. A good deal all around.

The Predictability Paradox

The best way to achieve predictable software development outcomes is to start early,
learn constantly, commit late, and deliver fast. This may seem to cut against the grain of
conventional project management practice, which is supposed to give more managed,
predictable results. But predictability is a funny thing; you cannot build with confidence
on a shifting foundation. The problem with conventional approaches is that they assume
the foundation is firm; they have little tolerance for change.

The paradox is that trying too hard to create predictability creates opposite effect.
Conventional practices are fragile in the face of change, and even in the face of learning.
And yet, the more complex the system, the more necessary learning becomes. What is
needed is an approach that encourages learning, and does not commit until learning is
complete.

It should be obvious that decreasing the amount of speculation involved in making a
decision increases predictability of the outcome. If you can make decisions based on
facts rather than forecasts, you get results that are more predictable. Lean development is
the art and discipline of basing commitments on facts rather than forecasts. It starts
earlier, encourages change, freezes decisions later, and delivers faster than traditional
practices, but nevertheless lean development produces outcomes that are more
predictable.

Copyright  2003 Poppendieck.LLC Executive Summary

The paradox of lean development is that you have give up some of the trappings of
predictability in order to get true predictability. You have to abandon some conventional
wisdom to gain the benefits of making decisions with more certainty. Fundamentally,
you have to develop the capability to respond to events as they unfold, rather than hold
dear the capability to orchestrate events in advance.

Principles of Lean Software Development

This research report discusses how lean thinking is applied in a software development
environment. Software development is a broad subject, and no set of practices will apply
to all software development environments. However, there are some fundamental
principles that do apply to all software development environments. These principles are
guidelines to aid in the formulation of practices appropriate for individual software
development environments.

We’ve already mentioned four principles of software development:

1. Start Early. Start every development activity just as soon enough information
exists to get started. Don’t wait for the details; get everyone involved in figuring
them out together. When development involves throwing information over a wall
from one group to the next, none of the tacit knowledge critical to the success of
the project will make it over the wall, and none of the essential feedback makes it
back. Don’t build any walls. Create high bandwidth, two-way communication
flows among all participants by starting the learning cycles as early as possible.

2. Learn Constantly. Start with a breadth-first approach, exploring multiple
options, but at the same time, develop complete, tested increments of
functionality. Although these increments should production-capable, they are not
‘final.’ In particular, early increments are expected to change as the system
emerges, so they require a simplicity and robustness that allows them to be
refined as the details of the system emerge.

3. Delay Commitment. Encapsulation and loose coupling are the key mechanisms
for delaying commitment. Although these techniques have been known for many
years, object-oriented design brought them to the forefront of software
development. To these we add refactoring (improving design as code is
developed) and automated testing, which are essential for keeping code
changeable not only during development, but throughout its lifetime.

4. Deliver Fast. The ability to deliver fast is the mark of excellent operational
capability. The whole idea of delaying commitment is to make every decision as
late as possible, allowing you to make decisions based on the most current
knowledge. It makes no sense to delay commitment if you can’t deliver fast.
Speed decreases the length of the feedback loop and means you are acting on the
most current information possible.

Alone, these principles are not enough. Four additional focal points are fundamental to
lean development:

Copyright  2003 Poppendieck.LLC Executive Summary

5. Eliminate Waste. The only thing worth doing is delivering value to customers.
Anything else is waste. Seeing and eliminating waste is the first step to a lean
value stream. Making value flow rapidly from receipt of a request to delivery is a
fundamental principle of lean thinking.

6. Empower the Team. When the flow of work is rapid and responsive, there is no
time for central control. The work environment should be structured so work and
workers are self-directing. People, not systems, develop software.

7. Build Integrity In. Lean development produces a product with integrity – when
flow is rapid, there simply is no room for shoddy work. This means that a
complete test suite that documents the intentions of developers and the
requirements of customers is part of developing software. Tests are not after-the-
fact events, but are integrated into software development, controlled just as any
other code, and become part of the delivered product.

8. Avoid Sub-Optimization. We have a strong inclination to break a complex
whole into parts that are more manageable and manage each separately.
However, this disaggregation has a well-documented tendency to create sub-
optimized behavior. If you look behind self-defeating organizational behavior,
you will usually find that it is caused not by the incompetence of people, but by
measurements and expectations that optimize a part at the expense of the whole.

This report examines each of these principles in more detail, and discusses particular
software development practices that can be used to implement them.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 5 Last Updated June 2, 2003

Predictable Outcomes

Wall Street has little sympathy for companies that can’t meet their
forecasts every quarter. In turn, senior management expects department
managers to make and meet forecasts. By the time these expectations
arrive at an IT department, meeting forecasts often becomes a significant
challenge. Unfortunately, it seems that a large fraction of software
projects fail to deliver on their promises for one reason or another.1

Why is it that software development projects seems to have so much
difficulty delivering predictable outcomes? It seems that all too often
projects are late or over budget or they deliver the wrong system or all of
the above. How can the predictability of software development outcomes
be increased? This executive report discusses a dilemma: in our zeal to
improve the reliability of software development, we have institutionalized
practices that decrease, rather than increase, the predictability of
outcomes.

If this claim leaves you skeptical, consider that a decade ago, Japanese
automakers routinely developed new model cars in 1/3rd less time, for half
the cost of Detroit automakers. Only one sixth of the Japanese
development programs were late, compared one-half of the US programs.2
Yet the automobiles developed through these faster, cheaper programs
were very successful. For example, Toyota’s profitability from 1982 to
1998 was 1/3rd higher than Chrysler’s, twice that of Ford, and three times
that of General Motors.3

If you look at traditional software development practices today and
automotive development practices a decade ago, you will find strong
similarities. At General Motors, for example, a special team defined a
four phase process which instructed each department what to do, when to
do it, what results to produce, and where to send them. This extensive
process was almost never followed in the real world of complex vehicle
development, and did little to shorten development times or bring the other
benefits expected of thorough planning. In fact, the more companies

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 6 Last Updated June 2, 2003

attempted to define the process of product development, the less the
organization was able to carry out that process.4

Japanese automakers use concurrent engineering to develop products.
Light on process and heavy on communication, concurrent engineering
has been widely adopted as the preferred vehicle development approach in
recent years. Toyota refines concurrent engineering with set-based
design; they start development early with a broad array of possibilities,
and narrow the specifications through a series of increasingly accurate
prototypes.

The paradox of set-based design is that development starts as soon as a
vehicle concept is approved. It proceeds at an aggressive pace, even while
multiple options are explored. And yet, commitment is delayed as long as
possible. At Toyota, hard vehicle dimensions are not frozen until after the
first parts are formed and bolted together – incredibly late by Detroit
standards. Finally, once decisions are reached, scale up is very rapid.

The Predictability Paradox

The best way to achieve predictable software development outcomes is to
start early, learn constantly, commit late, and deliver fast. This may seem
to cut against the grain of conventional project management practice,
which is supposed to give more managed, predictable results. But
predictability is a funny thing; you cannot build with confidence on a
shifting foundation. The problem with conventional approaches is that
they assume the foundation is firm; they have little tolerance for change.

The paradox is that trying too hard to create predictability creates opposite
effect. Conventional practices are fragile in the face of change, and even in
the face of learning. And yet, the more complex the system, the more
necessary learning becomes. What is needed is an approach that
encourages learning, and does not commit until learning is complete. That
is why Toyota does not attempt to tell die cutters the exact dimensions of a
sheet metal stamping die until they have actually stamped out parts and
bolted them together. Only then do they know for sure where the
millimeters need to be shaved or built up to achieve a perfect fit. Other

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 7 Last Updated June 2, 2003

automakers need to adjust the dies at the last minute also; they just pay a
lot more for the ‘unexpected’ changes, or live with ill-fitting parts.

Michael Dell learned about not basing decisions on forecasts the hard way.
At one point his young company bought a ton of memory chips, only to
have them quickly turn obsolete, resulting in a multi-million dollar write-
off. Dell decided that holding inventory was about the most risky thing
his company could do. He decided that from then on he would respond to
the market rather than try to predict what it would do. The rest is history.

It should be obvious that decreasing the amount of speculation involved in
making a decision increases predictability of the outcome. If you can
make decisions based on facts rather than forecasts, you get results that are
more predictable. Lean development is the art and discipline of basing
commitments on facts rather than forecasts. It starts earlier, encourages
change, freezes decisions later, and delivers faster than traditional
practices, but nevertheless lean development produces outcomes that are
more predictable.

The paradox of lean development is that you have give up some of the
trappings of predictability in order to get true predictability. You have to
abandon some conventional wisdom to gain the benefits of making
decisions with more certainty. Fundamentally, you have to develop the
capability to respond to events as they unfold, rather than hold dear the
capability to orchestrate events in advance.

Think about it this way. Throughout the 20th century, millions of people
in dozens of countries bet that a planned economy would perform better
than a market economy, and they lost the bet. Today, thousands of people
in hundreds of companies are betting that a planned approach to software
development will work better than a adaptive one. The extent to which
they are right will no doubt be directly correlated to the capability of the
domain to remain unchanged over the timeframe of the planned
development.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 8 Last Updated June 2, 2003

Principles of Lean Software Development

For the remainder of this research report, we will discuss how lean
thinking is applied in a software development environment. First a
disclaimer: software development is a broad subject, and no set of
practices will apply to all software development environments. However,
there are some fundamental principles that do apply to all software
development environments. These principles are not immediately
actionable; they are guidelines to aid in the formulation of practices
appropriate for individual software development environments.

We’ve already mentioned four principles of software development:

9. Start Early. Start every development activity just as soon enough
information exists to get started. Don’t wait for the details; get
everyone involved in figuring them out together. When
development involves throwing information over a wall from one
group to the next, none of the tacit knowledge critical to the
success of the project will make it over the wall, and none of the
essential feedback makes it back. Don’t build any walls. Create
high bandwidth, two-way communication flows among all
participants by starting the learning cycles as early as possible.

10. Learn Constantly. Start with a breadth-first approach, exploring
multiple options, but at the same time, develop complete, tested
increments of functionality. Although these increments should
production-capable, they are not ‘final.’ In particular, early
increments are expected to change as the system emerges, so they
require a simplicity and robustness that allows them to be refined
as the details of the system emerge.

11. Delay Commitment. Encapsulation and loose coupling are the
key mechanisms for delaying commitment. Although these
techniques have been known for many years, object-oriented
design brought them to the forefront of software development. To
these we add refactoring (improving design as code is developed)
and automated testing, which are essential for keeping code

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 9 Last Updated June 2, 2003

changeable not only during development, but throughout its
lifetime.

12. Deliver Fast. The ability to deliver fast is the mark of excellent
operational capability. The whole idea of delaying commitment is
to make every decision as late as possible, allowing you to make
decisions based on the most current knowledge. It makes no sense
to delay commitment if you can’t deliver fast. Speed decreases the
length of the feedback loop and means you are acting on the most
current information possible.

Alone, these principles are not enough. Four additional focal points are
fundamental to lean development:

13. Eliminate Waste. The only thing worth doing is delivering value
to customers. Anything else is waste. Seeing and eliminating
waste is the first step to a lean value stream. Making value flow
rapidly from receipt of a request to delivery is a fundamental
principle of lean thinking.

14. Empower the Team. When the flow of work is rapid and
responsive, there is no time for central control. The work
environment should be structured so work and workers are self-
directing. People, not systems, develop software.

15. Build Integrity In. Lean development produces a product with
integrity – when flow is rapid, there simply is no room for shoddy
work. This means that a complete test suite that documents the
intentions of developers and the requirements of customers is part
of developing software. Tests are not after-the-fact events, but are
integrated into software development, controlled just as any other
code, and become part of the delivered product.

16. Avoid Sub-Optimization. We have a strong inclination to break a
complex whole into parts that are more manageable and manage
each separately. However, this disaggregation has a well-
documented tendency to create sub-optimized behavior. If you
look behind self-defeating organizational behavior, you will

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 10 Last Updated June 2, 2003

usually find that it is caused not by the incompetence of people,
but by measurements and expectations that optimize a part at the
expense of the whole.

This report examines each of these principles in more detail, and discusses
particular software development practices that can be used to implement
them.

Principle 1: Start Early

There are many software development failures that can be attributed to
rushing in to development without understanding customer requirements
or starting with a poor architecture which quickly calcifies into
unmanageable code. Poor development habits such as lack of testing and
source code management are indicators of impending disaster. In the face
of these known failure modes, how can we possibly suggest that starting
early is a good idea?

If time were really the cause of these problems and more time could really
cure them, then certainly, we would recommend taking all of the time
necessary to avoid software development disasters. But if time is a
scapegoat for the real problem, then taking more time will not cure the
problem. In fact, by ignoring the root causes of the software development
problems we only give them the space to grow worse.

Requirements

So let’s start by agreeing that understanding customer requirements is
fundamental to successful software development. Gathering all the
requirements at the beginning of development, however, is not the way to
solve this problem. First, as we all know, users rarely have the ability to
cleanly articulate what they really need. Secondly, users needs will
change once they see the potential of the system and understand what it
can do for them. Third, both the technology and the domain will change,
and the longer the development time, the more it will change.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 11 Last Updated June 2, 2003

Worse, detailed requirements gathering has turned into a separate
discipline, removing the people who gather requirements from the
technical people developing the system. If there is one clear lesson we
have learned from concurrent development, it is that the technical people
making the day-to-day development tradeoffs must have a deep and
intuitive grasp of what customers will really want once the system is
delivered. This does not come from detailed requirements documents; it
comes from excellent information flow between those who understand the
customers and those who are developing the system.5

When gathering requirements is an arduous process with the results
transmitted by paper to the development team, there is a weak, one
directional, time-delayed information flow from customers to developers.
The more time this takes, the weaker the link becomes. When developers
are working on a complex product in an evolving environment, the bulk of
the design will be determined by detailed trade-offs being made daily by
the technical people working on the project. Doing this right requires a
short feedback loop between the customers and the developers. An early
start sets up this necessary communication flow early on. A late start gets
in the way of this information flow.

Architecture

There are plenty of war stories about poor architectures that missed a key
customer requirement like security or response time or some other critical
feature that in the end resulted in a need to scrap the system and start over
at a huge cost. So cautious managers believe that if design that is more
detailed goes into a system before development starts, these disasters will
be prevented. Unfortunately, this approach has a tendency to lead to
premature design commitment, the very cause of the problem it is
supposed to address.

Most people have a tendency to deal with complex problems by
disaggregating the problem into its parts and focusing on the individual
parts of the system. The problem with this approach is that the broad field
in which the problem exists will not be examined closely once effort

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 12 Last Updated June 2, 2003

moves to the sub-problems. Disaggregation means that the spaces
between the parts and the interaction of the parts are easily forgotten.

Disaggregation is like creating many tunnels, each of which is explored in
depth. But when you want to discover what you have not though of, what
critical issue you have overlooked, it will probably not be found in one of
the tunnels. Worse, once the tunnels are built, going back to the surface to
dig a new interconnecting tunnel can be very painful.

Lean development takes a funnel approach, exploring the breadth of the
landscape and only gradually narrowing the field of view. For example,
Toyota drives new vehicle development through a series of prototype
milestones. At the first milestones, several rough prototypes with broad
tolerances are produced. As milestones progress, the number of
prototypes and the tolerances are reduced, although two or three options
are maintained and tolerances are not finalized until just before
production.

The architecture of a complex system is not a static thing that can be
designed at the beginning and left alone. The details of a good
architecture emerge as skilled developers from all disciplines explore the
problem together and refine the solution. Excellent product development
performance requires excellent, detailed, bi-directional information flow
among everyone on the development team:6 analysts, architects, customers
and customer proxies, database administrators, developers, help desk staff,
maintenance programmers, technical writers, testers, typical users, user
interface designers; everyone.

It is not time that leads to good architectures, nor more early detail; it is
information flow among skilled people. Taking more time does not
produce better designs; the skill of the development team and flow of
information are the deciding factors. If you focus on getting the right
people working together, they will take the system where it needs to go.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 13 Last Updated June 2, 2003

Discipline

Starting early and moving fast is not related to doing sloppy work. All
great organizations have a culture of discipline, but this does not come
from hierarchy or bureaucracy, it comes from disciplined people and
disciplined thought.7 In software development, discipline means that the
basics are in place: source code control, version tracking, a build process,
a testing process, coding standards, database and user interface policies,
security screening, and so on. If these are not in place, you are not ready
to get started.

It is not possible to move quickly or produce a quality product in an
undisciplined environment. In the past several years, the measure of
discipline of a software organization has been called its level of ‘maturity,’
and a long list of practices has been attached to each level of ‘maturity.’
However, the maturity model tends to focus on implementing a long list of
processes, rather than on fostering the inherent discipline found in skilled,
dedicated people.

Let’s look at one example to illustrate this point. Several years ago a
small company called Zeos, which assembled PC’s in my home town of
Minneapolis, won a Malcolm Baldrige award. This national quality award
was a strong endorsement that the company’s processes were very mature.
At the same time, an equally small company in Austin Texas, which also
assembled PC’s, was spending its time figuring out what rapid flow of
product directly to customers really meant. Instead of documenting its
processes and submitting them to a maturity certification board, Dell
Computer Corporation was investing in skilled people who invented new
processes every week.

Disciplined software development habits come primarily from disciplined
people who want to produce good results. No group of skilled developers
cares to waste their time finding lost code or reconciling different
versions. With wise leadership and appropriate training, good developers
will gladly adopt the necessary practices and tools to enable them to
generate high quality work in their particular environment. By all means,
be sure to attend to this before trying to start early or deliver fast.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 14 Last Updated June 2, 2003

Principle 2: Learn Constantly

Constant learning seems like a good idea until you realize that it is the
opposite of ‘freezing’ specifications. Wait – slow down, you say. What is
wrong with first planning the work and then working the plan? Two
things are wrong – if you don’t know everything there is to know before
you create a plan, then you are creating plans based on speculation. Thus,
your outcomes will also be based on speculation. Secondly, things
change. If you don’t have feedback loops in your development process,
you will be developing for the situation that existed at the beginning of the
plan, not when the software is delivered.

Planning is a very good thing. It’s the plans themselves that are generally
useless, especially in software development. So do the planning, but
throw out the plans. In lean software development, the goal is not to be
able to forecast the future; the objective is to be positioned to respond to
the future as it unfolds. This ability to adapt to reality is what gives all
lean organizations their competitive advantage.

Iterative Development

The most fundamental technique for constant learning in software
development is iterative development. Let’s be very clear about what
iterative development is all about. An iteration produces a small, tested,
integrated increment of business value that is validated by customers and
used as feedback for the next iteration. Iterations occur at short, regular
intervals and they involve everyone: from architects to testers to the help
desk staff.

Iterative development is the basic building block of lean development; it’s
the moral equivalent of ‘Just-in-Time’ in manufacturing. On the other
hand, the method of implementing iterations will differ from one
environment to another. So let’s review the primary intent of iterations –
and that is, learning.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 15 Last Updated June 2, 2003

Project management for a new vehicle model at Toyota means setting the
dates for the regular prototype milestones: vehicle sketches, clay models,
design structure plans, first prototype, second prototype, production trials,
release to production. At each milestone, the tolerance level is reduced
until there are only a few millimeters of tolerance in stamping dies, for
instance, at production trials.

The process is sort of like carving an ice sculpture. You start with a large
block of ice from which many things can be made. First, the big cuts are
made, revealing the general shape of the sculpture. As time goes on, more
detail is reveled by cutting away more options. Once options are removed,
they are not revisited. This increasing refinement gradually narrows the
options on the final appearance of the sculpture.

Similarly in software development, early iterations should leave many
options open, but as time goes on, fewer degrees of freedom remain. Even
so, early iterations should be complete – that is – they should be tested,
integrated, even production-capable. However, they should not be
‘frozen.’ Early iterations represent one way – preferably the simplest way
– that the increment of business value can be implemented. As
development proceeds, the design is improved – or refactored – as new
increments of business value are added, to keep it simple and remove any
repetition. Early on, significant refactoring can be expected. In some
domains – embedded systems come to mind – tolerance for change might
narrow as the design funnel narrows. If this is the case, then the areas
most likely to change should be the subject of early iterations.

Synchronization

When many people are involved in developing a complex system, there
must be a way to synchronize the work of multiple teams regularly so their
learning can be merged effectively. There are several ways to do this,
depending on the domain. A standard approach when code is shared
among developers is to have a regular (at least daily) code check-in
process, followed by a build, after which an automated test suite is run.
Often called the ‘daily build and smoke test’, this is an essential technique

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 16 Last Updated June 2, 2003

for providing a short feedback loops in just about any development
environment.

Another synchronization technique is to develop a simple spanning
application that demonstrates basic functionality through all layers of the
system. A spanning application has also been called a tracer bullet,
thread, and spike. By whatever name, the idea is the same. Once the
fundamental software approach is demonstrated, multiple teams can
implement the same design across the broader system.

A third technique is the matrix approach, where individual teams are
assigned responsibility for various modules. The project starts by
developing the cross-team capabilities – the interfaces between the
modules. Once the inter-team software is actually running (not just
defined, actually running), the teams develop their assigned modules using
iterations, continually integrating their increments of development into the
overall framework, which was developed first. This technique develops
the most difficult, risky, and communication-intensive portion first;
leaving the relatively easier part until last.

Principle 3: Delay Commitment

Delaying commitment means keeping your options open as long as
possible. The fundamental lean concept is to delay irreversible decisions
until they can be made based on known events, rather than forecasts.
Thus, Just-in-Time focuses on assembling the final product after an order
is in hand. Even when decisions have to be made before all of the facts
are in hand, there are many ways to delay commitment.

For example, suppose I want to plan an outdoor wedding in my home state
of Minnesota on August 10th. I have to send invitations out many weeks
in advance, and about the best I can do in forecasting the weather is count
on a temperature somewhere between 65º F and 95º F. There is no way to
know if it will rain at the time the invitations must be sent. In Minnesota,
we deal with this uncertainty by renting a tent. As long as we have the
tent, we erect the top in any case. If it’s sunny, the guests will probably

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 17 Last Updated June 2, 2003

appreciate the shade, and if it is rainy or cold, we can add sides to the tent
at moment’s notice.

Take a look at every decision you make, determine what kinds of forecasts
the decision is based on, and the certainty of those forecasts. If the level
of certainty is low, then the first thing to do is to try to delay the decision
as long as possible. If the decision can’t be delayed, the next thing to do is
to ‘rent a tent,’ that is, find ways to reduce the dependency of the decision
on the forecast.

The Last Responsible Moment

Decisions should be make at the last responsible moment: the moment at
which failing to make a decision eliminates an important alternative.
Making decisions before the last responsible moment means making them
without the best possible information, but delaying a decision beyond this
point means letting the decision make itself. Making decisions at the last
responsible moment does not mean procrastinating so that decisions are
made by default.

You need to develop a sense of when decisions must be made and then
make them when their time has come. It is equally important to develop a
sense of what is critically important in the domain and make sure these
areas are not overlooked in the decision-making process. If security and
response time are important in this domain, they must surface early so that
when the time comes to make decisions in these areas, issues have been
fully investigated and informed decisions can be made.

One of the easiest ways to delay commitment significantly is to emphasize
the expectation that developers share partially complete design
documentation. Usually there is a reluctance to do this; most people tend
to want to do their job completely before involving downstream functions.
However, developing a complete design before sharing it forces upstream
departments to make commitments early, and encourages the throw-it-
over-the-wall syndrome. It is far better to share partially complete designs
and arrange for direct, cross-functional collaboration.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 18 Last Updated June 2, 2003

Decisions can be delayed much longer if you have developed a quick
response capability. Just-in-Time assembly is the quick response
capability that enables Dell to wait until an order is received before the
computer is assembled, and yet ship the computer within a week. Without
fast response, it is not possible to delay commitment until forecasts turn
into orders.

Foster A Sense of How to Absorb Change

There is an art to delaying commitment in software development, and it
involves developing a sense of how to absorb changes. When you are
developing a large, complex system, you probably do not want to include
every degree of freedom you can imagine. It is more practical to
understand the domain well enough to understand the most likely axes of
change. The idea is to encapsulate the areas most likely to change, and
separate areas that will probably change independently. Object oriented
design assists in this because thinking about the domain as objects tends to
both encapsulate areas that are likely to change at the same time, and
separate areas that are likely to change independently.

Virtually every enterprise system these days has a layered architecture,
separating user interface, business rules, and database or persistence into
separate layers. A layered architecture is a good start at encapsulation and
separation of concerns as long as lower level layers do not depend on
higher-level layers. Thus, the business rules should not depend on the
kind of user interface that is being used, and there should not be any
business logic in the user interface. Similarly, the business logic should
not depend on what kind of database is being used, and business logic
should not be implemented in the database.

A key technique for absorbing changes easily is to avoiding repetition like
the plague. If you have to say the same thing in more than one place –
either in design documents or code – then refactor the design to
consolidate the capability into one place. One of the most effective ways
to facilitate change is to localize every potential change in only one place.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 19 Last Updated June 2, 2003

An even more effective technique for absorbing change is to develop and
maintain an automated test suite as part of the system. In a complex
system you have no idea what the unintended consequences of a change
might be, so the trick is to maintain a current test suite which allows
changes to be made with confidence. Automated tests will be covered in
detail in the section on integrity.

Write Less Code

An obvious technique for delaying commitment is to write no code before
its time. This means avoid developing any extra features just because they
seem like they would be ‘nice-to-have.’ Implementing features that are
not needed, on the speculation that they might be useful, adds a lot of
long-term baggage: source code tracking, testing, documentation, training,
help desk support, maintenance, and on and on.

In addition to adding excess baggage, implanting capabilities before they
are needed is simply a bad idea. Why? First, it is speculation to assume
that the features will actually be needed in the future exactly as you
implement them now. There is a good chance that things will change and
your work will have been for naught. Worse, an early, not quite correct
implementation tends to interfere with the correct implementation later on.
The excess baggage that was added is hard to ferret out and fix.

But there is an even bigger problem with early specification and
implementation of features. In one investigation by the Standish Group, it
was found that 45% of the features and functions of a system were never
used, while only 20% were used frequently.8 Few people in software
development dispute these numbers. Most find that it meshes with their
experience that close to 2/3rds of the features in a typical system may be
rarely or never used.

If we could eliminate the 2/3rds of the features in a typical system that are
simply excess baggage, we could write systems with only 1/3rd of the code
and even a great reduction in complexity. We would have far less
documentation, testing, support, and opportunity for failure. This would
indeed be a dramatic improvement in software development.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 20 Last Updated June 2, 2003

How do we get rid of all those unnecessary features? For one thing, we
stop asking people for a laundry list of desirable features at the beginning
of a software development project. Instead, we start by implementing top
priority features first. We resist the temptation to add extra features, even
those further on down the priority list, until they become the top priority.
We get the simple, basic functionality working and let the customer
discover before we implement them that most of the features on their wish
list are things they won’t use anyway. This lean approach to managing
scope is the fastest, easiest way to write less code. It will be discussed
further in the section on eliminating waste.

Principle 4: Deliver Fast

To those who equate rapid software development with hacking, there
seems to be no reason to deliver results fast, and every reason to be slow
and careful. But if you look beyond software development, consistent fast
delivery is an indicator of superior performance. When you send an
overnight package via Airborne or Federal Express or UPS, you know that
reliable next day delivery comes from excellent operations.

I can remember when I used to fill out a form and mail it into Sears, and
receive my order in a couple of weeks. Then LL Bean started taking
orders by phone and shipping the next day. Suddenly Sears service, which
had been adequate for decades, started feeling very slow. Unable to keep
up with industry standards for speed of service, Sears eventually was
forced to close down its century-old catalog store.

In most areas, speed is associated with superior quality. You prefer to
shop at a store with short checkout lines. You want broadband Internet
service. In fact, consistent fast delivery is not possible without high
quality. Just-in-Time manufacturing is not possible when the production
process cannot be depended upon to produce high quality product.

Returning to software development, think of reliable, repeatable, rapid
delivery as the sign of excellence in a software development organization.
We’re not talking about rush jobs, we’re talking about a sustained
capability to deliver working software quickly. If your organization can

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 21 Last Updated June 2, 2003

do that, you probably don’t have to measure how mature it is, you know
it’s right up there with the best.

Queueing Theory

When you get stuck in a traffic jam, it’s no comfort to know that traffic
engineers study the mathematical theory behind your predicament. But
the next time you are stuck in traffic, you might spend the time thinking
about traffic jams in your organization. What causes traffic jams? Too
many cars for the carrying capacity of the road. Does work flow
seamlessly through your organization, or is there more work flowing
through your organization than there is capacity to handle it? Have you
evaluated the overall impact of slow movement of work through your
organization on the company?

Perhaps you hate to see anyone in your organization standing around with
nothing to do, but when the tables are turned and you go to a grocery store
or stand in line at the airport, you probably wish the store or airline had a
few people standing around just waiting to help you. Queueing theory is
the study of how to achieve both goals – keep the waiting lines as short as
possible and the work flowing as fast as possible while providing best
utilization of restricted resources.

The paradox in queueing theory is that you do not get the best utilization
of scarce resources by running them at 100% capacity. You already know
this if you run a computer operations center; you would never run the
servers in your computer room at full capacity, because you know traffic
slows to a crawl when you do. Have you considered that the same thing
probably happens when your people are working at better than full
capacity?

Queueing theory demonstrates that reducing the size of batches moving
through a system allows you to provide faster service at higher utilization
levels. The idea is to divide development up into many small batches of
work that flow through your organization, rather than a large lump of
work that moves en masse. In the last section we suggested that early
release of partially complete design information is a good way to delay

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 22 Last Updated June 2, 2003

commitment. We further suggested developing systems in small
increments. Here we see that these practices are also good ways to
improve the flow of work through an organization and increase delivery
speed.

Self-Directing Work

It never ceases to amaze me that I can sit at the computer in my home
office, print out an Airborne label, and schedule a pickup. About 5 or 6
pm someone rings my doorbell to pick up the package. At 9:00 the next
morning, it’s delivered half way across the country. As my package
moves on its way, quite a few people have to do the right thing to get my
package delivered on time. I often wonder, how do all of those people
know what to do?

The secret is that every package has directions on it. Managers do not try
to schedule each person’s day in detail; they set up a system where the
package labels tell drivers and sorters what to do. You will find the same
thing in any fast-moving situation. When emergency workers arrive at an
accident, the situation and their training tell them what to do. Just-in-Time
manufacturing works just like stocking shelves at a supermarket: when a
shelf is emptied of inventory, the feeding workstation makes whatever is
needed to restock the shelf.

In all rapidly moving operations, management’s role is to set up a self-
scheduling system, balance capacity, and train workers. Then the system
itself, and fellow workers, send signals that indicate what is to be done.
You will not find a fast-moving system that uses central scheduling,
because there isn’t time for a central system to evaluate all of the options,
deal with all of the variances, and make correct decisions. People are
much better at that.

Let’s take another look at Toyota’s product development scheduling
mechanism. The chief engineer of a new model sets the dates for the
regular prototype milestones: vehicle sketches, clay models, design
structure plans, first prototype, second prototype, production trials, release
to production. There are no master schedules or Pert charts or Gantt charts

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 23 Last Updated June 2, 2003

or earned value tracking. The people in each function know what is
expected of them at each milestone, and they deliver. It’s that simple. If
engineers need information or subassemblies in order to meet their
deadline, they are expected to get them. There are no excuses; everyone
figures out for themselves how to meet the deadlines.

A rapidly moving schedule is best implemented by intelligent people, not
centralized planning. The management challenge is to organize work so
that the people have the training, tools, capacity and motivation to deliver
reliable, repeatable results. When your organization can do that, you have
a mature organization.

In software development, the moral equivalents of Toyota’s prototype
milestones are regular iteration deadlines. Early on, the overall iteration
plan is sketched out, and then at the beginning of each iteration, the exact
goals of the iteration are fleshed out. The iteration planning meeting is the
place where customers or customer proxies set priorities, and the
development team estimates it’s capacity for the next iteration. If the
iteration is a month or less, it is reasonable to expect that the immediate
business priorities can be established and development time can be
accurately estimated.

Thus the iteration planning meeting establishes the expectations for the
next milestone. If the development team can reliably produce working
software delivering the expected increment of business value by the
deadline, then the organization is working well. If the expected business
value tracks the overall iteration plan that was sketched out at the
beginning of the project, then the project has a high degree of
predictability. If it does not track the original plan, then there is most
likely something wrong with the overall plan.

Self-directing work is fast, reliable, disciplined, and a very accurate
predictor of the capability of the organization. It provides quick, accurate
feedback to management, to the business, and to the development team.
Some managers have difficulty believing that by turning detailed direction
over to the people involved, they will get better, faster, more predictable
results. Yet in any system in which the underlying pace of change

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 24 Last Updated June 2, 2003

outstrips the planning cycle, self-directing is the only practical way to
deliver reliable, repeatable results.

Principle 5: Eliminate Waste

The first principle behind lean thinking is to focus all efforts on adding
value for customers, and to make the value-adding activity flow as rapidly
as possible. In practice this means selecting a few end-to-end customer
processes and focusing on how much value is created and how fast value
is created in each process.

Walk the Value Stream

A good exercise for eliminating waste is to follow a customer request from
the time it arrives at your organization until the time the customer is
satisfied. Walk in the shoes of a customer as their request comes into your
organization, goes into your priority setting mechanism, comes out
approved, arrives at your development organization, makes its way
through your development process, is installed at the customer site, and
the expected business value is (or is not) delivered. Firmly planted in your
customer’s shoes, visualize each step of this process, and think about how
you might deliver more value, more reliably, and faster.

First look for bottlenecks. How long does the approval process take (on
average)? Once development starts, does it keep moving at a reliable pace
until it’s done, or are there bottlenecks which put development on hold
while, for instance, you wait for a design review or testing? Why aren’t
these things integrated into the development flow? Are people multi-
tasking and slowing down all the projects? Are dates for the next
milestone known and reliability met? How long does it take to deploy an
average system to production? How much training does your customer’s
staff need?

As long as you are in your customer’s shoes, forget for a moment about
your organization’s goals and think about your customer’s goals. Is their
domain evolving? Do they need change tolerance? Do they have many
people using their software? Do they need high usability? What kind of

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 25 Last Updated June 2, 2003

growth are they expecting? Do they need extensibility? How vulnerable
are they to intrusion? Do they need extra security? Do your end-to-end
processes discover and support these goals? And finally, who in your
organization cares about these customer issues?

Seeing Waste

Waste is anything that does not add value, as perceived by customers. In
lean thinking, eliminating waste is the key lever for achieving excellence.
But before you can eliminate waste, you have to recognize it for what it is.
You might think, for example, that your change authorization system is
essential to control scope creep. But there are two things wrong with this
assumption. First, there are better ways to control scope (more on this
later), and second, the change authorization system you are using is
probably not perceived by your customers as adding value. After all, your
system is probably there to keep your customers from changing their
minds. Why would they find that valuable?

Let’s take a deeper look at waste. From a customer perspective, any time
spent waiting to achieve the perceived business value of their request is
wasted time. The time their request spends sitting in your in-box waiting
to get scheduled into your organization is waste. So is the time the request
spends waiting in other queues in your development process. Even though
it may not be your problem, the time it takes to deploy the system to
production is waste. One thing is for sure, unless these bottlenecks are
recognized and addressed, they are not going to go away, and the waste
will continue.

In lean manufacturing and lean logistics, inventory is considered waste.
This doesn’t mean you have to eliminate all inventory, but the idea is to
keep it at a minimum, because it adds no value. Not only is inventory kept
low at a manufacturing plant or warehouse, but throughout the value
stream. Thus not only will Dell have low inventory at its plants, but its
vendors will also keep very low inventory as well. Dell does not achieve
its rapid delivery capability by forcing suppliers to take risks with
inventory, it focuses on minimizing the risk of inventory across the value

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 26 Last Updated June 2, 2003

chain. Moreover, because Dell delivers very quickly, its customers can
keep inventory low also.

The inventory of software development is partially done work. So as you
look for waste to eliminate look at the queues of partially done work in
your organization. Actually, queueing theory indicates that the level or
partially done work is directly proportional to the speed at which an
average request moves through your organization, so if it takes a long time
for you to respond to customer requests, you know you have a lot of
inventory of partially done work. The objective is to find this waste and
eliminate it. You can measure whether or not you are successful either by
measuring the speed of your end-to-end processes or by measuring the
size of the queues of unfinished work.

Doing extra work is also waste. Do you really need a user’s manual, or
would it be better to focus on making the system so usable that a manual is
unnecessary? A lot of help desk time is wasted when people have to look
things up in a users manual. In fact, one company attributed a million
dollar drain on its profits to a printer driver that was too difficult for users
to figure out, so they swamped the help desk until the software was
recalled. You might kill two birds with one stone and eliminate the user
manuals while making life easier for your customer’s support people by
focusing on usability.

Task switching is waste. If you have two projects, each of which takes
two months, can you get both done in four months? Probably not, because
your people will be changing context frequently, which takes time in an
activity such as software development where good ideas ‘flow’ only after
uninterrupted time spent immersed in the details of the system. Moreover,
many people will have dual commitments, and if priorities are not clear,
some people will favor one project, some the other project, so each will be
cause the other to be delayed. It is usually far more efficient to do one
project first, and then the other.

How much time and motion does it take developers to get answers to
questions? How much time do they loose waiting for answers from
customers or other developers? If your software is going to flow rapidly

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 27 Last Updated June 2, 2003

through your system, the waste of walking around looking for answers and
the waste of waiting for other people has to be eliminated.

Some have thought that if everything could just be written down and
handed off to the next person, there would not be so much time wasted
waiting to find out answers, people could just refer to the documentation.
But experience has shown that the opposite is true – handing off
documentation over the wall to the next department causes waste. The
tacit knowledge of the people writing the document doesn’t make it into
the document, and the creators of the document don’t think of many
details needed by the receiving department. Sequential hand-off of
documentation is a big creator of waste.

Creating defects is waste in direct proportion to the length of time the
defect is in the system. So if a big defect is created and discovered
immediately through testing, it doesn’t create much waste. If a small
defect hangs around for a long time and is discovered just before
shipment, it creates a much bigger waste. The idea is to catch defects
early, through some combination of review and testing appropriate to the
domain.

Scope

The biggest waste in software development are the features and functions
that are developed, tested, and supported, yet rarely if ever used. Earlier
we noted that perhaps 2/3rds of the software in a system might fall into this
category. Whatever the ratio, it is far too large, and none of the scope
control mechanisms we have used so far has made a big dent in it.

Here’s the problem. Suppose you say to customers, “Okay, we’re going to
give you a system to solve XYZ problem. We’re going to gather all of the
requirements, analyze them, and write them down in a big book for you to
review. Your job is to make sure we have gotten everything right, because
once we start coding, you can’t make any changes. So we’re going to ask
you to sign-off on the requirements, and then if you want any changes,
we’ll estimate the cost and you’ll have to approve the change.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 28 Last Updated June 2, 2003

Now let’s assume that the customers don’t really know what they need to
solve XYZ problem (that’s why they asked you to solve it). Thus, they are
worried that they might forget to tell you something as you gather
requirements, so they try to be very thorough. The process does not ask
them to be sure that they need something when they put it on the
requirements list; the process encourages them to put everything on the list
unless they are certain they will not use it.

Is it any wonder that a system developed under these rules will have many
features that end up in the rarely-if-ever-used category? In our standard
approach to defining scope, we build in tremendous incentives for
excessive scope. Freezing scope usually has exactly the opposite effect
that we desire. It does not prevent scope creep; it causes scope bloat.

So what’s the alternative? First, accept the fact that customers cannot
clearly specify at a detailed level exactly what they want; in fact, most
won’t know what they want until they see it in production. So implement
in small increments, in priority order based on business value, and get
customer feedback after every increment. Encourage early release to
production, or at least production trials, of skeleton systems with only high
priority features. Let the customers discover what they really need and
will actually use, and develop only those features. If possible, discard any
features that are not used. By starting early and committing late, you can
write far less code.

Let’s acknowledge right at the start the term scope has a bit of a
condescending ring to it. Customers don’t care about scope; they care
about business value. The people who worry about scope are those who
are trying to keep customers expectations in line with what’s reasonable
(or what’s funded). So scope is sort of a fence we put around customers to
keep them in line. Customers get even by pushing on the fence so that it
surrounds more territory.

We need to get rid of the fence and the implied condensation, and start
using trust. Customers need to trust developers to deliver the required
business value in the timeframe and for the cost that is justified by the
value. Developers need to trust customers to clarify the priority of

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 29 Last Updated June 2, 2003

features and let them stop developing when they run out of time or money
or both. If both organizations are in the same company, establishing this
trust should not be so difficult. When two or more companies are
involved, trust is a whole different issue which we will discuss later in this
report.

Principle 6: Empower The Team

Lean organizations are profoundly centered on the people who do the
work. If this is true in manufacturing and logistics, it is far truer when
knowledge workers are on the front line. Yet it seems to be difficult for
many organizations to truly center on the people who develop software.

There are many people involved in software development. On the one
extreme, we have the learn-on-the-job loner who can rightly be called a
hacker. At the other extreme, we have the process police telling
developers how to do their jobs. In the middle, we have many people who
very much want to do a good job, but will not tolerate condensation.

The basics have not changed. You need to have the right people. You
need to be able to train new people and foster expertise. You need wise
leadership and cross-functional teamwork. You need the right mix of
discipline and self-determination. It’s all very easy to say. Getting there
is another matter entirely.

If there is one guidance that lean thinking can offer in this maze, it is that
people should design their own processes, and these processes should be
expected to change continuously. This contradicts the prevailing emphasis
on defined, documented processes, which software development
theoretically adapted from the best manufacturing practices. I would
argue that defined, documented processes do not constitute ‘best practices’
in manufacturing. Excellent manufacturing practices start and end with
front line workers defining and constantly improving their own processes.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 30 Last Updated June 2, 2003

Manufacturing Process Design

In the 1980’s an accidental experiment was set up that showed how much
the expectations of management could influence both the skill and the
motivation of front line workers. The General Motors Fremont, California
plant was closed in 1982 to end a record of abysmal quality and a history
of problems with a rancorous union. Two years later the plant re-opened
as the New United Motor Manufacturing, Inc., or NUMMI, under Toyota
management. The experiment began when Toyota was required to hire
back 85% of the union members and all of the union leadership. With the
same workforce and the same job, the only difference was management
style. Would things really change?

Within two years, the productivity of the NUMMI plant surpassed that of
all General Motors plants, and to this day, it remains one of the most
productive plants in the country. The results of the experiment are clear:
the same general group of people with different management turned in
spectacularly superior results and sustained these results over the long
haul. What was different?

Toyota management started out by avoiding the condensation inherent in
the traditional approach to automotive manufacturing. Instead of hiring
back the hundreds of industrial engineers who typically be needed to
design the manufacturing jobs, they taught the workers how to be
industrial engineers and design their own jobs. Aggressive training
programs and strong peer pressure combined to sort out incompetent
workers and encourage skilled workers to improve continually. The
bottom line is, a management emphasis on front line workers defining and
constantly improving their own processes accounts for most of the
difference between abysmal performance and stellar results.

Nucor Steel, which went from nearly bankrupt in 1968 to the largest steel
company in the United States today took the same approach to its
workforce. It located its plants in farm communities and had local
contractors build the plant. The contractors that did a good job could
expect to be hired and work in the plant they helped build. Nucor hired

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 31 Last Updated June 2, 2003

people with an excellent work ethic and superior mechanical ability, and
they let them design new steel-making processes as well as their jobs.

A Management Process

In the late 9180’s, after Jack Welsh rationalized GE’s businesses and
eliminated many people, he spent some time talking to front line workers.
They told him that there was just as much work in the company as before,
but far fewer people to do it. So Welsh talked to their managers, who
agreed that there was unnecessary work. Welsh wanted to know why the
managers didn’t eliminate the extra work, but they complained that they
were also swamped, and had little time to make changes. So in an effort
to get unnecessary work out of the business, a frustrated Welsh invented
something that he called Work-Out.

Of all the corporate programs over many years, the GE Work-Out has
been one of the most uniformly successful and one of the most accepted
by employees. This is probably because Work-Out is a process that tells
managers what to do, rather than telling workers what to do. At a Work-
Out, the senior manager hosts a meeting with a few dozen front line
workers, who spend two days coming up with proposals on how to
eliminate waste and make their work flow faster. The proposals are
presented to the senior manager, who is required to say ‘yes’ or ‘no’ to
each proposal on the spot. If the answer is yes, then the people who made
the proposal are chartered to implement it immediately.

Software Process Design

Instead of looking for the perfect process to use to assure that your
organization will develop great software, devise a way to enable the
workers in your organization to design their own processes. Start with the
assumption that every capable developer wants to work in a stable
environment with good basic practices, and that your developers already
know what is wrong with your environment and how it can be improved.
Creating a superior software development environment involves
unleashing the dedication and brainpower of the people doing the work.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 32 Last Updated June 2, 2003

The fundamental enabling mechanism for people to design their own
process is to have a good understanding of the purpose of their activities.
In the Marines, leaders are expected to communicate end state and
command intent, rather than giving specific directions. Similarly, a
development team needs to know what the group needs to achieve in order
to design appropriate processes. A control system for a machine in a
factory will require entirely different processes than a web page for filling
out a survey. A system that falls under federal regulation has different
parameters than a sales support system.

Once a team understands what they are supposed to accomplish, they will
know if existing processes are up to the task, need beefing up, or are too
overbearing. Every software development project should start with a team
selection of processes appropriate to achieve the mission, and every
iteration should start with a review and update of the processes used in the
last iteration. If a team finds that their processes fall short and need
improvement, they must be given the time to put the necessary structure in
place to allow them to do a good job. If a team finds that corporate
processes are inappropriate for their task, they must have the trust and
freedom to use alternative processes to accomplish the same overall goals.
Management’s job is to establish a framework in which teams can use
their collective brainpower to determine the best way to do their job.

Condescension

All too often, the actions of managers and central staff groups telegraph
the message to workers: “We’re smarter than you.” Before NUMMI, the
GM Fremont plant had scores of industrial engineers going around with
stopwatches designing the jobs of the workers. The message was clear:
We’re smarter than you are. One of the key reasons Toyota management
was so successful is that they made the workers feel they were being
treated like adults.

A few years back when experienced software developers were hard to
find, there was a search for processes “designed by geniuses to be run by
idiots,”9 which would enable inexperienced and ill trained people to
successfully develop software. Even if such processes could be found,

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 33 Last Updated June 2, 2003

they simply could not compete against processes that leverage the
intelligence and skill of developers. Worse, the fundamentally
condescending tone of such processes encourages developers to disengage
from the success of the project and the organization.

Many organizations have departments, often called staff groups, chartered
to gather knowledge and educate the rest of the company in some area of
expertise – for example, Capability Maturity Model (CMM) or some other
good practice that management wants to see disseminated throughout the
company. Unfortunately, knowledge gatherers and disseminators often
approach their job by developing and enforcing standard processes. The
message they send loud and clear is, “We’re smarter than you.” Simply
using the word ‘maturity’ telegraphs a message of condensation.

Staff groups in a lean organization start with the assumption that
development teams know their jobs and their problems better than anyone
else does. The role of the staff groups is to make itself so useful that it is
invited to help developers work on their problems; staff groups in a lean
organization would not consider trying to impose software development
processes by edict.

Leadership

In the book Good to Great,10 Jim Collins discusses the distinguishing
characteristics of an organization that moves from mediocre performance
to sustained superior performance. You don’t find strategy or process
anywhere on the list of factors that move companies from good to great;
but at the top of the list are these two characteristics: Level 5 leadership
and getting the right people in the right positions.

A Level 5 leader is someone with a blend of personal humility and
professional will who leads skilled people by quietly and effectively
bringing out their best efforts. Level 5 leaders are found in the
background, crediting other people when things go right, stepping forward
only when things go wrong, to take the blame.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 34 Last Updated June 2, 2003

Companies that are excellent at product development usually place a Level
5 leader at the helm of a new product development effort, whose job it is
to understand the customer requirements and constantly keep them in front
of the developers. Toyota, for example, has a chief engineer in charge of
every vehicle development program. A chief engineer has ultimate
responsibility for understanding the customer, developing the vehicle
concept, and transmitting that concept regularly to the engineers making
the day-to-day tradeoffs that will eventually determine the success of the
car. Sometimes the chief engineer has been called a heavyweight project
manager, but this is not a good characterization. The chief engineer at
Toyota is a Level 5 leader, someone who knows how to get things done
through others without heavyweight tactics. A chief engineer does little in
the line of management, but rather focuses on the technical architecture of
the automotive system and the overall business success of the car.

Complex software development efforts require Level 5 leaders who
combine deep understanding of the domain with the technical knowledge
needed to understand the day-to-day decisions that developers must make,
and facilitate a broad information flow between the two. Just as a chief
engineer has the technical competence to oversee the system design of an
automobile, complex software development needs a technical leader
capable of overseeing the architecture of the system and assuring that this
architecture will meet the customer needs.

Excellent designs concepts often originate with an experienced technical
leader, but they are never the work of one person. An effective software
development leader must be able to marshal the forces of the entire
development team, while developing a deep understanding of the customer
domain. Architects who are removed from the day-to-day development,
or those who are not deeply familiar with the customer domain, are
unlikely to design great products. Worse, architectural edicts from staff
groups usually come across as uninformed and condescending to a
development team.

For smaller projects, it is usually a good idea to let leadership emerge
rather than trying to appoint a leader. Level 5 leaders tend to work in the

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 35 Last Updated June 2, 2003

background to create an effective environment. Left to its own devices, a
team will find and follow such a leader; in fact, various leaders often
emerge at different points of a project. Management can rarely select a
better leader than the one a team selects for itself, and encouraging the
emergence of leaders in small teams is one of the best ways to find and
develop the Level 5 leaders needed for larger projects.

Expertise

The second characteristic of Good to Great companies is that the Level 5
leader starts by getting the right people on board and in the right positions
and the wrong people off doing other things. Then, with the right
expertise in place, the team figures out where to go and how to get there.

No amount of process can substitute for expertise. If you are converting
an Oracle database to a SQL database and the developers have never
programmed stored procedures before, you have a recipe for disaster. If
you are designing a web site with developers who have no background in
user interface design, you can’t expect the web site to have the usability
characteristics that facilitate high sales. If you are developing new
business rules with developers who have no background in object-oriented
thinking, you should not expect wise encapsulation nor appropriate
separation of concerns.

Certainly everyone does not have to be an expert, but you must have
appropriate expertise in all critical areas of the system either on the
development team or readily accessible when needed. You should also
have a good method for transferring expertise broadly within a team, so
that no one person becomes indispensable. Pair programming has proven
enormously effective at facilitating such knowledge transfer; well-
structured design reviews also work well.

In general, every area of specialization that constitutes a competitive
advantage should be supported by a center of expertise that fosters
learning and knowledge transfer in the specialized area. Of course, just
like staff groups, these centers of expertise are teaching and support
centers. If they begin to transmit the message “We’re smarter than you,”

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 36 Last Updated June 2, 2003

rather than “We’re here to support you,” they will rapidly loose their
effectiveness.

Principle 7: Build Integrity In

Lean organizations always produce high quality products – there is no way
they can consistently commit late and deliver fast if they have sloppy
procedures or make a poor quality product. Since lean organizations focus
on delivering value to customers, they develop a deep understanding of
what value means, and constantly tune their organization to spend all of its
time creating customer value.

Rethinking Testing

Traditional software development practices focus on requirements
gathering and traceability as the foundation of a quality product. Lean
software development focuses instead on testing as the foundation of
product integrity. Lean thinking starts with the assumption that all people,
at some time, will make mistakes, and thus it is necessary to mistake-proof
all human activity. The idea is not to train and exhort people to do a better
job. The idea is to assume that every mistake that can possibly be made
will be made, and so mechanisms must be put into place to make mistakes
impossible.

I remember adding disk drives to PC’s some years ago, and more likely
than not things would not work when I turned on the power. After a while
it was automatic – I would check the IDE cable and sure enough, I had put
it in wrong. Virtually all other the cables in a PC can only be put in one
way – you can’t put them in upside down or backward. But the IDE cable
was different – not only could it be put in upside down, it could easily be
shifted one or two pins left or right of the correct position. Yet it was very
difficult to detect these mistakes visually. I’m sure that the designers
assumed that only ‘experts’ would add new disk drives to computers so
they did not need to mistake-proof the cable. Well, I was a process control
engineer, as expert as they come, but I still got the cable plugged in wrong
many a time. Today IDE cables have one plugged hole and one missing

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 37 Last Updated June 2, 2003

connecting pin, so it is impossible to put it in the wrong way. It took the
industry far too long to fix this problem.

Software systems should be designed to be mistake-proof. Any software
system that might be changed in the future should come with a complete
set of automated tests, so that when changes are made, it will impossible
to break the rest of the system. Systems that are delivered without the
associated tests are like the IDE cable of old. They are missing the
obvious mistake-proofing feature that should be part of any system. Test
suites are not just for novices – in fact, just as with the IDE cable – experts
probably need test suites more than anyone does.

Tests are not an after-the fact event used to check whether the developers
did things right. Tests are used at every step of development to see if the
intention of the developer was properly implemented. Virtually all
developers test their code once it is written to see if it really does what
they expect it to do. Unfortunately, these tests are usually informal and
are rarely captured.

Since I was a process control engineer, I wrote code that moved
equipment, and the equipment was not in my office as I wrote the code.
Usually it was a long airplane ride away. So I always wrote a simulator
for my code, and as I added each new feature, I ran it through the
simulator. With rare exceptions, I could count on my code working
correctly the first time I hooked it up to hardware, and my reward was a
faster return home to my family.

I developed used multiple techniques to mistake-proof code. Often I
needed to write assembly language code to optimize performance. I
would first write the algorithm in a high level language, prove out the
logic through test sequences, hand-optimize the assembly language
version of the high level language, and re-run the tests. Since logic
verification and performance optimization are different things, I mistake-
proofed the logic before optimizing for performance.

Techniques such as these which incorporate testing and integration into
the development process are fundamental to producing a product with

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 38 Last Updated June 2, 2003

integrity. Writing code without testing it thoroughly strikes me as a poor
practice, one which will extend the time necessary to produce a working
system. As long as tests will be done during development, it seems only
logical that these will become part of the delivered product, maintained as
part of the code, changed as the system changes, and run every time there
is a new build. Tracing code back to requirements, sending code off to a
separate testing group, and documenting the system, all strike me as
practices that distract developers from using the most reliable method of
assuring that software works and is maintainable: tests.

 If you have limited resources and can choose only one approach to
developing a sound product, then including an automated test suite as part
of the deliverable code is by far your best investment. Although tests
alone are not likely to constitute a complete description of the system
requirements, they are the best way to document the detailed
understandings reached between developers and customers as the code is
developed. Even when a final run through a test group is standard
practice, it is no substitute for having testers involved in the day-to-day
development work, providing immediate feedback to developers and
helping document through tests what users really want. Although some
final documentation is a good idea, those who maintain the code are
unlikely to trust it, but they will trust a working test suite to help them find
unintended consequences of their changes.

An automated test suite makes concurrent software development possible.
You cannot start early and decide late if you cannot make adjustments
with confidence along the way. The whole point of concurrent
development is to develop a capacity to change so commitments can be
delayed as long as possible. An automated test suite is the key to
developing a capacity to change. With so many benefits, it’s amazing that
every system isn’t routinely developed and delivered with an automated
test suite as an expected part of the deliverable.

Developing by Feature

In the past, software tests were categorized into unit tests, system tests,
and integration tests. This hierarchy of tests is left over from the days

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 39 Last Updated June 2, 2003

when individuals ‘owned’ individual software modules. However, these
days we do not program software module-by-module, we program
software feature-by-feature. This generally means that the code in any
individual module is commonly owned, so that when a developer adds a
feature, she can make changes to all the modules necessary to implement
that feature. When the next developer makes changes to the same
modules, he has to make sure that his changes are compatible. For this
reason, we need tests. But these tests are not limited to individual
modules, because when we develop by feature, we generally integrate new
code into the overall system right from the start. Thus, everything a
developer does should be tested at the unit, system, and integration level
just as soon as possible.

It is a good thing that we are no longer building systems module by
module, then trying to integrate everything at the end of a project. When
integration tests were left until the end, and they were notoriously difficult
to pass and often required a lot of redesign of individual modules. By
moving integration activity much further forward in the development
process, we not only solve the tough problems early, we get outcomes that
are more predictable.

So, if we no longer have unit, system, and integration tests, what types of
tests do we have? The most basic type of test is the one we already
discussed, the developer test. These tests should be written by the
developers to test that the mechanisms they intended to implement
actually work. They should be automated and run after every build.
Developers who are merging in new code before they actually check the
code into the source control system might also use a private set of tests.

There must also be customer tests, which test whether or not code
addresses the customer needs. Although some approaches suggest that
customers write customer tests, in practice testers or analysts who
represent the customers usually write them. Generally, customer tests
should be automated, but sometimes they will start out as manual tests.
Testers might also recommend exploratory tests and other methods to test
that features work as customers would expect.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 40 Last Updated June 2, 2003

Another category of testing which is important for insuring integrity is
usability testing. The idea behind usability tests is to give users who know
nothing about the system a set of tasks and watch quietly as they work
their way through the tasks. If the system is not self-explanatory or if they
make mistakes, then the system gets a lower usability score. Usability can
make tremendous differences for on-line storefronts, where usable web
sites can double sales. It can make a big difference for other products as
well. Often help desk expenses can be dramatically reduced by an effort
to deploy only software with high usability scores.

At Microsoft, an application feature is not considered complete until it has
been usability tested, and the feature developers are expected to observe
the test.11 Not surprisingly, developers are often astonished at how users
actually use the features they develop. There probably isn’t any better
way for developers to get rapid, unbiased feedback on how usable their
approach is than to watch a usability test of a feature shortly after they
write the code. In fact, the immediacy of the feedback is a primary factor
in its effectiveness. A developer who has gone on to other things will not
learn nearly as much from usability tests as one who observes users
immediately after the feature is implemented.

Systems should be tested under load in the production environment or an
exact replica, throughout the development cycle. One system I worked on
would randomly overrun the thin client user buffers in production,
something that could not occur in the development environment. In
addition, a devious database transaction nesting problem led to system
crashes, but only under the load of multiple users. These are the kinds of
problems that are best discovered and corrected early in the development
cycle, but they will only be discovered if the system is load tested in its
target environment or a replica, early and often during development.

Principle 8: Avoid Sub-Optimization

If the principles of lean thinking seem counterintuitive, it is probably
because our performance management systems tend toward management
by disaggregation of a whole into its parts.12 The problem is, the whole is

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 41 Last Updated June 2, 2003

not the sum of its parts; in fact, optimizing individual parts has a tendency
to sub-optimize the overall system. In our rush toward accountability and
responsibility, we often create performance measurements that encourage
optimization of parts at the expense of the whole. Yet once we have
committed to measuring performance in pieces, it is often difficult to
recognize the difficulties with those measurements.

When I was a systems manager in a magnetic tape manufacturing plant,
performance was measured on unit cost and machine productivity. A huge
part of unit cost was the burden rate of the coating machines. Assume a
coating machine had to be depreciated at $100,000 per month. Then if the
machine ran for 400 hours during the month, each hour had $250 burden
rate. But if it ran for only 200 hours, then each hour had a $500 burden
rate. Clearly, it was much better for the unit cost of all the products to run
the machine for 400 hour each month.

However, if we ran the machine for 400 hours and produced product that
was not immediately needed, we just built inventory that clogged the isles,
got lost and damaged, and grew obsolete. We had no idea how much
damage this inventory was doing to our operations until we started
focusing on lowering inventory rather than reducing burden rate. We
never realized how many hours we spent expediting orders that could not
make it through the plant because of the piles of inventory, or the space
we wasted storing inventory, or the time we spent keeping track of it. We
had automated scheduling systems to help with the expediting and
automated warehouses to handle all the stuff we pushed through those
machines just to keep the burden rate low.

Eventually we implemented Just-in-Time scheduling. Much to our
surprise, we found we needed half the production space for twice the
production volume, and we could ship orders in a week rather than a
month without expediting. We threw out the computer systems that
scheduled, tracked, priced, and managed in-process inventory. The people
who fed those systems data and looked after their health found better ways
to spend their time. Amidst all of that efficiency, unit costs appeared to go
up because the coaters were not running full time, the asset base of the

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 42 Last Updated June 2, 2003

division was reduced because we had less inventory, and we had to write
off the remaining depreciation on some computer systems. The
accountants were not happy to see all of these numbers head in the wrong
direction, yet the overall results of the division improved significantly.

Disaggregation

Conventional project management practice says we should disaggregate
each project into a work breakdown structure (WBS), and manage the cost
and schedule of the individual parts. This approach reminds me of the unit
costs and burden rates in my plant, and how optimizing them buried us in
hidden, unrecognized costs. The experience of lean manufacturing and
concurrent product development should alert us to the fact that
disaggregation is a seductive, but often sub-optimizing approach.

Managing a set of disaggregated tasks ignores the flow of value across the
entire economic chain. It is concerned with the cost and time of doing
things, but doesn’t consider the value of not doing things. It looks within
task boundaries, not at the impact of each task on the end-to-end process.

Usability is a good example of the importance of flow. It is easy to create
individual screens for a web site, but until the flow of the user through the
screens is considered, it is not clear if the individual screens, however
artfully designed, are useful or a waste of time. Similarly, individual
development steps such as testing or requirements gathering might be
done very well, but if they are not integrated into the overall flow of
development, they loose much of their usefulness.

The Project Scorecard

A decade ago, Robert S. Kaplan and David P. Norton13 proposed the
concept of balanced scorecard as a way to derive performance measures
from the drivers of value in a company. Over the past ten years, balanced
scorecards have been used in many large companies to “help guard against
suboptimization.14”

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 43 Last Updated June 2, 2003

The traditional project measurements of cost, schedule, and scope are
financial measures, with the same tendency to create the same
suboptimization that financial measures tend to create in other areas of the
business. Corporate executives have adopted balanced scorecards because
they understand that financial measures alone are inadequate and in fact,
often focus attention on the wrong things. Instead of the assumption that
all projects should be measured on cost, schedule, and scope, each project
should develop an individual scorecard that reflects the drivers of business
values for that project.

The first question to ask at the beginning of a project is “When this project
is complete, who will decide if it is a success?” This should be followed
closely by: “How will everyone know that this project is a success?” The
answers to these questions should become the project scorecard. They
should be the guidelines that influence the tradeoffs that people must make
every day on the project.

Performance Measures

Measurements are funny things. Over time, you will get what you
measure and pay attention to, so you have to be very careful to measure
everything that is important. Thee trouble is, it’s very difficult to measure
everything, and when we notice that something is missing, we tend to add
another measurement to plug the hole. A better approach to dealing with
gaps in a measurement system is to reduce the number of measurements
and raise the span of each measurement.

Even though our tendency is to disaggregate things to be sure we are
measuring everything, we get better results with the opposite approach:
measure the whole in preference to the pieces. Some people avoid
aggregate measurements because they desire to hold individuals
accountable, so they prefer to base performance measurements on things
over which individuals have direct control. However, it is more effective
to hold people accountable for things over which they have influence, not
just what they can individually control. It is more effective to measure
team performance, not individual performance.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 44 Last Updated June 2, 2003

It is rare that individuals can be successful by themselves, so rewarding
them individually can create ill will among colleagues. On the other hand,
if rewards are based on performance of a larger group, collaboration is
encouraged. For example, a very large element of pay at Nucor Steel is
based on productivity, but that productivity is measured across a large
group of peers. Plant managers at Nucor, for example, receives a sizable
amount of their salary based not on the productivity of their plants, but on
the productivity of all the plants. Thus, they are encouraged to share their
good ideas with all of the other plants.

Software development measures often involved defect counts, which give
an indication of readiness for release. These measures should be
aggregated and the entire team focused on reducing them. We learned
long ago in manufacturing that defects are rarely the ‘fault’ of individuals;
they are an indication of a problem with the end-to-end process. Thus
everyone involved should work together to discover ways to reduce
defects: developers, testers, analysts, even managers.

Across Company Boundaries

In ‘Management Challenges for the 21st Century,” Peter Drucker points
out that the scope of management is not defined by the boundaries of an
institution, “It has to be focused on results and performance across the
entire economic chain.”15 He notes that in every case where a single
management system has integrated the entire value chain, a cost advantage
of 25 to 30% has resulted, resulting in dominance in the industry and the
marketplace.16

For example, General Motors was created when William C. Durant bought
up automotive companies and their suppliers, resulting in a vertically
integrated company that made 70% of everything that went into a finished
automobile. This vertical integration allowed GM to manage value across
the economic value chain, and gave GM a 30% cost advantage over
competitors for three decades.17

GM’s began to loose this cost advantage about the same time that
Japanese automakers developed the keiretsu, a tight-knit alliance of

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 45 Last Updated June 2, 2003

affiliated companies that work toward each other's mutual success. The
keiretsu resulted in the same cost advantage that GM had enjoyed, for the
same reason; managing value across the economic chain gives a
significant competitive advantage. It is neither vertical integration nor
close supplier relationships that creates the competitive advantage; it is
excellent management of value creation from the beginning to the end.

The 25 – 30% advantage Drucker attributes to vertical integration or a
keiretsu comes from the removal of boundaries and the ability to create
maximum benefit for the entire chain of organizations, rather the
maximizing the individual benefit or each organization. Dell Computer is
a good example of this. Recognizing that the greatest portion of value lies
in the distribution end of the computer business, Dell controls that end of
the business, while organizing its suppliers into a value chain that is
significantly more efficient than its competitors.

The Purpose of Contracts

Unfortunately, the economic logic that drives close cooperation between
companies in a supply chain is not widely recognized by people
negotiating software development contracts. Most such contracts are
aimed at protecting the parties from taking advantage of each other; they
are generally silent on how to balance the overall good of the endeavor
with the individual interests of each party. Such contracts do very little to
help the parties manage end-to-end value creation across the economic
chain. If we want to realize the significant economic benefits that accrue
to those who focus on optimizing end-to-end value, we need to focus
contracts on achieving the best results for the endeavor.

The first step to establishing a keiretsu is to reduce our dependence on
using contracts as the vehicle that keeps parties from taking advantage of
each other. Instead of using contracts for this purpose, we should depend
upon the relationship to establish expectations and policies for fair
behavior. Then we can focus the contract on creating the best overall value
for the joint endeavor. Good idea, you say, but how does it work in
practice?

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 46 Last Updated June 2, 2003

Trust between firms does not come from trust between individuals; it
comes from consistent, fair behavior over time. Thus, an effective
partnership requires that policies requiring fair behavior be in place in
each company. Companies that routinely and by policy focus on the
overall good rather than their own individual advantage will behave in a
consistent manner with their partners, even if individuals change.
Consistent behavior creates confidence in partners and a reputation in the
industry. This kind of confidence is not something that comes from
contracts, but rather, it comes from a reputation built up by actions over
time. If confidence in the fairness and capability of a partner is the basis
of a partnership, then the contract can be focused on the overall good of
the endeavor rather than keeping parties from taking advantage of each
other.

Target Contracts

Target contracts provide a good mechanism for focusing on the overall
good of the endeavor. A target contract establishes the overall targets that
are important to success and provides in some way for an equitable
sharing of the costs, benefits and risks of achieving the targets. The most
common target contract is a target cost contract, in which both parties
work to achieve the general goal of the contract within a specific cost. For
example, Toyota will contract with tool and die makers to design and cut a
stamping die for a total cost, including any changes. The details of the die
are sketchy at the time of the contract, and the engineers in both
companies will have to work closely together to achieve the target cost. If
for any reason the target cost cannot be met, the companies will negotiate
in good faith a fair way to share the overrun.

In software development, a target cost/schedule contract is often the most
desirable contract form. In a target cost/schedule contract, both parties
agree to try to achieve specific cost and schedule targets for achieving an
overall objective. The tickly part about such contracts is that the details of
the delivered features are not written into the contract; they are worked out
through the close collaboration of developers with customers over the

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 47 Last Updated June 2, 2003

course of the contract. If for any reason the targets cannot be met, the
parties agree negotiate a fair resolution in good faith.

If target contracts seem risky, consider how risky the traditional software
development contract has proven. Only a quarter to a third of projects
succeed on all three fronts of cost, schedule, and scope at the same time.18
Perhaps this abysmal record is not due to shortcomings in the projects
themselves, but due to the assumption that it is possible and desirable to
fix all three of these parameters and then predictably achieve them. If one
can fix cost, schedule and objective (rather than scope) and obtain a high
degree of certainty that the project will achieve success against these three
targets, then target contracts can be considerably less risky than traditional
contracts. If predictability is important, consider target cost/schedule
contracts with competent partners that have a record of fairness.

Conclusion

Those who invest in financial instruments can obtain predictable results
from an interest-bearing account. They receive low returns in exchange
for letting someone else deal with the underlying uncertainty of financial
markets. Those who want greater returns accept the fact that markets are
uncertain and adopt strategies to obtain predictable results despite the
unpredictable nature of the investment. The most common strategies are
diversification and options.

If you are developing software for an evolving domain, you are better off
accepting the underlying lack of certainty and adopting effective strategies
to deal with it. Probably the least effective way to deal with uncertainty is
to pretend that it isn’t there. This is the equivalent of investing all your
money in a single stock and assuming it will continue to rise, or
scheduling a wedding in August in Minnesota and assuming that it won’t
rain. No amount of planning can take away the inherent unpredictability
of the weather or the performance of a single company.

Diversification is one of the most fundamental strategies for dealing with
uncertainty in financial markets, and it works well for software
development also. Avoid investments in monolithic systems, favor

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 48 Last Updated June 2, 2003

strategies that develop systems one component at a time. Incremental
development, particularly when coupled with incremental release to
production, provides a way to break investments into small pieces that can
be monitored separately.

Options are an even better way to deal with uncertainty. When you
purchase an option you have the opportunity, but not the obligation, to do
something in the future. If you rent a tent for that summer party, you are
purchasing an option on a dry place to hold the party. You have the
opportunity to set the tent up if it looks like rain, but you don’t have to use
it if the weather is beautiful.

Lean development is an options-based approach to software development.
It focuses on starting early with an array of options and keeping those
options open as long as possible so that final decisions can be made as late
as possible. Options are explored through a series of end-to-end learning
cycles that involve everyone who might have information to contribute.
Once decisions are made, it is the mark of excellence to be able to
implement them rapidly, consistently, and in a manner which yields the
best system-wide results.

1 In his Keynote ‘ROI, It’s Your Job,’ at the Third International Conference on Extreme
Programming, Alghero, Italy, May, 26-29, 2002, Jim Johnson, Chairman of The Standish
Group, discussed the results of the annual Chaos Report by the Standish Group. It found
that 28% of projects succeed, 23% fail outright, and 49% are ‘challenged’ – that is it
completed over budget, over time, and/or with fewer features and functions than planned.

2 Womack, James P., Jones, Daniel T., Roos, Daniel, The Machine That Changed the
World: The Story of Lean Production, HarperPerennial, 1991; Originally published:
Rawson Associates, New York, 1990. p 118.
3 Dyer, Jeffrey H., Collaborative Advantage, Winning Through Extended Enterprise
Supplier Networks, Oxford University Press; 2000 p 6

4 Sobek, Durward K. II, Liker, Jeffrey K., Ward, Allen C., ‘Another Look at How Toyota
Integrates Product Development’, Harvard Business Review, July-August 1988, p 44.

Lean Development and The Predictability Paradox

Copyright © 2003 Poppendieck.LLC Page - 49 Last Updated June 2, 2003

5 This is the basic thesis of the book: Clark, Kim B, Fujimoto, Takahiro, Product
Development Performance; Strategy, Organization, and Management in the World Auto
Industry, Harvard Business School Press, Boston, 1991

6 See footnote 5.

7 See Collins, Jim, Good to Great: Why Some Companies Make the Leap… and Others
Don’t, Harper Business, 2001, Chapter 6.

8 In his Keynote ‘ROI, It’s Your Job,’ at the Third International Conference on Extreme
Programming, Alghero, Italy, May, 26-29, 2002, Jim Johnson, Chairman of The Standish
Group, discussed the results of a study of how often features and functions in a system
are used: never (45%), rarely used (19%), sometimes used (16%), often used (13%),
always used (7%).

9 Quote from Sobek, Durward K. II, Liker, Jeffrey K., Ward, Allen C., ‘Another Look at
How Toyota Integrates Product Development’, Harvard Business Review, July-August
1988, p 49

10 Collins, Jim, Good to Great: Why Some Companies Make the Leap… and Others
Don’t, Harper Business, 2001

11 Cusumano, Michael A., Selby, Richard W., Microsoft Secrets, How the World’s Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages People,
paperback edition, Simon & Schuster, 1998. Originally published in 1995

12 Austin, Robert D., Measuring and Managing Performance in
Organizations, 1996, Dorset Publishing House
13 Kaplan, Robert S., Norton, David P., “The Balanced Scorecard – Measures That Drive
Performance”, Harvard Business Review, January- February 1992.

14 Ibid

15 Drucker, Peter F., Management Challenges for the 21st Century, Harper Business,
1999, p 34

16 Ibid. p 33.

17 Ibid

18 See footnote 1.

