
Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Lean Principles –> Thinking Tools –> Agile Practices  

Copyright © 2002 Poppendieck.LLC  Introduction - 1  Last Updated February 2, 2003 
  

Introduction 
This is a book of thinking tools for software development leaders.  It is a toolkit 
for translating widely accepted lean principles into effective agile practices that fit 
your unique environment.  Lean thinking has long history of generating dramatic 
improvements in fields as diverse as manufacturing, health care and construction. 
Can it do the same for software development?  One thing is clear, the field of 
software development has plenty of opportunity for improvement. 

Jim Johnson, chairman of the Standish Group, told an attentive audience1 the 
story of Florida vs. Minnesota as each developed their Statewide Automated 
Child Welfare Information System (SACWIS).  In Florida, system development 
started in 1990, and was estimated to take 8 years and to cost $32 million.  As 
Johnson spoke in the year 2002, Florida had spent $170 million and the system 
was estimated to be completed in 2005 at the cost of $230 million.  Meanwhile, 
Minnesota began developing essentially the same system in 1999 and completed 
it in early 2000, at the cost of $1.1 million.  That’s a productivity difference of 
over 200:1.  Johnson credited Minnesota’s success to a standardized infrastruc-
ture, minimized requirements, and a team of eight capable people.  

This is but one example of dramatic performance differences between organiza-
tions doing essentially the same thing.  Such differences can be found not only in 
software development, but in many other fields as well.  Differences between 
companies are rooted in their organizational history and culture, their approach 
to the market, and their ability to capitalize on opportunities. 

The difference between high performance companies and their average competi-
tors has been studied for a long time, and much is known about what makes 
some companies more successful than others.  Just as in software development, 
there is no magic formula, no silver bullet2.  There are, however, some solid 
theories about which approaches foster high performance and which are likely to 
get in the way.  Areas such as manufacturing, logistics, and new product devel-
opment have developed a body of knowledge of how to provide the best envi-
ronment for superior performance. 

                                                 
1 Johnson, Keynote, Third International Conference on Extreme Programming  (2002) 
2 See Brooks “No Silver Bullet” (1986)  



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Lean Principles –> Thinking Tools –> Agile Practices  

Copyright © 2002 Poppendieck.LLC  Introduction - 2  Last Updated February 2, 2003 
  

We observe that some methods still considered standard practice for developing 
software have long since been abandoned by other disciplines.  Meanwhile ap-
proaches considered standard in product development, such as concurrent engi-
neering, are not yet generally considered for software development.   

Perhaps some of the reluctance to use approaches from product development 
comes from unfortunate uses of metaphors in the past.  Software development 
has tried to model its practices after manufacturing and civil engineering with 
decidedly mixed results.  This has been due in part to a naive understanding of 
the true nature of these disciplines and a failure to recognize the limits of the 
metaphor.   

While recognizing the hazards of misapplied metaphors, we believe that software 
development is similar to product development, and that the software develop-
ment industry can learn much from examining how changes in product develop-
ment approaches have brought improvements to the product development proc-
ess.  Organizations that develop custom software will recognize that their work 
consists largely of development activities.  Companies that develop software as a 
product or part of a product should find the lessons from product development 
particularly germane. 

The story of the Florida and Minnesota SACWIS is reminiscent of the story of 
The General Motors GM-10 development, which began in 1982.3  The first 
model, a Buick Regal, hit the streets seven years later in 1989, two years late.  
Four years after the GM-10 program began, Honda started developing a new 
model Accord aimed at the same market.  It was on the market by the end of 
1989, about the same time the GM-10 Cutlass and Grand Prix appeared.  What 
about quality?  Our son was still driving our 1990 Accord twelve years and 
175,000 mostly trouble-free miles later. 

Studies at the time4 showed that across multiple automotive companies, the 
product development approaches typical of Japanese automakers resulted in a 2:1 
reduction in engineering effort and shortened development time by one third, 
when compared to traditional approaches.  These results contradicted the con-
ventional wisdom at the time, which held that the cost of change during final 
production was 1000 times greater than the cost of a change made during de-

                                                 
3 Womack, The Machine That Changed the World (1991) p 110 
4 Womack, The Machine That Changed the World (1991) p.111  



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Lean Principles –> Thinking Tools –> Agile Practices  

Copyright © 2002 Poppendieck.LLC  Introduction - 3  Last Updated February 2, 2003 
  

sign.5  It was widely held that rapid development meant hasty decision-making, 
so shortening the development cycle would result in many late changes, driving 
up development cost. 

To protect against the exponentially increasing cost of change, traditional prod-
uct development processes in US automotive manufacturers were sequential, and 
relationships with suppliers were arm’s length.  The effect of this approach was to 
lengthen the development cycle significantly, while making adaptation to current 
market trends impossible at the later stages of development.  In contrast, compa-
nies such as Honda and Toyota put a premium on rapid, concurrent development 
and the ability to make changes late in the development cycle.  Why weren’t 
these companies paying the huge penalty for making changes later in develop-
ment? 

One way to avoid the large penalty for a change during final production is to 
make the right design decision in the first place, and avoid the need to change 
later.  That was the Detroit approach.  Toyota and Honda had discovered a 
different way to avoid the penalty of incorrect design decisions:  Don’t make 
irreversible decisions in the first place; delay design decisions as long as possible, 
and when they are made, make them with the best available information to make 
them correctly.  This thinking is very similar to the thinking behind Just-in-
Time manufacturing, pioneered by Toyota:  Don’t decide what to manufacture 
until you have a customer order; then make it as fast as possible. 

Delaying decisions is not the whole story; it is an example of how thinking 
differently can lead to a new paradigm for product development.  There were 
many other differences between GM and Honda in the 1980’s.  GM tended to 
push critical decisions up to a few high-level authorities, while Honda’s decision 
to design a new engine for the Accord emerged from detailed, engineering-level 
discussions over millimeters of hood slope and layout real estate.  GM developed 
products using sequential processes, while Honda used concurrent processes, 
involving those making, testing, and maintaining the car in the design of the car.  
GM’s designs were subject to modification by both marketing and strong func-
tional managers, while Honda had a single leader who envisioned what the car 

                                                 
5 Thomas Group, from Business Week (1990) 



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Lean Principles –> Thinking Tools –> Agile Practices  

Copyright © 2002 Poppendieck.LLC  Introduction - 4  Last Updated February 2, 2003 
  

should be and continually kept the vision in front of the engineers doing the 
work.6 

The approach to product development exemplified by Honda and Toyota in the 
1980’s, typically called ‘lean development’, was adapted by many automobile 
companies in the 1990’s.  Today the product development performance gap 
among automakers has significantly narrowed. 

Lean development principles have been tried and proven in the automotive 
industry, which has a design environment arguably as complex as most software 
development environments.  Moreover, the theory behind lean development 
borrows heavily from the theory of lean manufacturing, so lean principles in 
general are both understood and proven by managers in many disciplines outside 
of software development. 

Lean Principles –> Thinking Tools –> Agile Practices 

This book is about the application of lean principles to software development.  
Much is known about lean principles, and we caution that organizations have not 
been uniformly successful in applying them, because lean thinking requires a 
change in culture and organizational habits that is beyond the capability of some 
companies.  On the other hand, companies that have understood and adopted 
the essence of lean thinking have realized significant, sustainable performance 
improvements7. 

Principles are guiding ideas and insights about a discipline, while practices are 
what you actually do to carry out principles.8  Principles are universal, but it is not 
always easy to see how they apply to particular environments.  Practices, on the 
other hand, give specific guidance on what to do, but they need to be adapted to 
the domain.  We believe that there is no such thing as a ‘best’ practice; practices 
must take context into account.  In fact, the problems that arise when applying 
metaphors from other disciplines to software development are often the result of 
trying to transfer the practices, rather than principles, of the other discipline.  

                                                 
6 Womack, The Machine That Changed the World (1991) p104-110 
7 Chrysler, for example, adopted a lean approach to supplier management which is largely credited 

with their turnaround in the early 1990’s.  See Dyer, Collaborative Advantage (2000). 
8 Senge, The Fifth Discipline (1990) p 373 



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Lean Principles –> Thinking Tools –> Agile Practices  

Copyright © 2002 Poppendieck.LLC  Introduction - 5  Last Updated February 2, 2003 
  

Software development is a broad discipline – it deals with web design and with 
sending a satellite into orbit.   Practices for one domain will not necessarily apply 
to other domains.  Principles, however, are broadly applicable across domains, as 
long as the guiding principles are translated into appropriate practices for each 
domain.  This book focuses on the process of translating lean principles to agile 
practices tailored to individual software development domains.   

At the core of this book are twenty two thinking tools to aid software develop-
ment leaders as they develop the agile practices that work best in their particular 
domain.  This is not a cookbook of agile practices; it is a book for chefs who are 
setting out to design agile practices that will work in their domain. 

There are two prerequisites for a new idea to take hold in an organization: 

ü The idea must be proven to work operationally, and 

ü People who are considering adopting the change must understand why it 
works. 9 

Agile software development practices have been shown to work in some organi-
zations, and in Adaptive Software Development10 Jim Highsmith develops a theo-
retical basis for why these practices work.   Lean Development further expands the 
theoretical foundations of agile software development by applying well-known 
and accepted lean principles to software development.  But it goes further by 
providing thinking tools to help translate lean principles into agile practices that 
are appropriate for individual domains.  It is our hope that this book will lead to 
wider acceptance of agile development approaches.11  

                                                 
9 See Larpé, “Learning Across Lines: The Secret to More Efficient Factories” (2002) 
10 Highsmith (2000) 
11 Agile software development approaches include:  Adaptive Software Development (ASD) 

[Highsmith (2000)], Crystal Methods [Cockburn (2002)], Dynamic Systems Development 
Method (DSDM) [Stapleton (2003)], Feature-Driven Development (FDD) [Palmer (2002)], 
Scrum [Schwaber (2001)], and eXtreme Programming (XP) [Beck (2000)].  See Highsmith, 
Agile Software Development Ecosystems  (2002) for an overview of agile approaches. 



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Guided Tour 

Copyright © 2002 Poppendieck.LLC  Introduction - 6  Last Updated February 2, 2003 
  

Guided Tour 

This book contains seven chapters devoted to seven lean principles, and thinking 
tools for translating each principle into agile practices.  A brief introduction to 
the seven lean principles concludes this introduction. 

1. Eliminate Waste 

Waste is anything that does not add value to a product, value as perceived by 
the customer.  In lean thinking, the concept of waste is a high hurdle.  If a 
component is sitting on a shelf gathering dust, that is waste.  If a develop-
ment cycle has collected requirements in a book gathering dust, that is waste.  
If a manufacturing plant makes more stuff than is immediately needed, that 
is waste.  If developers code more features than are immediately needed, that 
is waste.  In manufacturing, moving product around is waste.  In product de-
velopment, handing off development from one group to another is waste.  
The ideal is to find out what a customer wants, and then make or develop it 
and deliver exactly what they want, virtually immediately.  Whatever gets in 
the way of rapidly satisfying a customer need is waste.   

2. Amplify Learning 

Development is an exercise in discovery, while production is an exercise in 
reducing variation, and for this reason, a lean approach to development re-
sults in practices that are quite different than lean production practices.  De-
velopment is like creating a recipe, while production is like making the dish.  
Recipes are designed by experienced chefs who have developed an instinct for 
what works and the capability to adapt available ingredients to suit the occa-
sion.  Yet even great chefs produce several variations of a new dish as they it-
erate toward a recipe which will taste great and be easy to reproduce.  Chefs 
are not expected to get a recipe perfect on the first attempt; they are expected 
to produce several variations on a theme as part of the learning process. 12  
Software development is best conceived of as a similar learning process, with 
the added challenge that development teams are large and the results are far 
more complex than a recipe.  The best approach to improving a software de-
velopment environment is to amplify learning. 

                                                 
12 See Ballard, “Positive vs Negative Iteration in Design” (2000). 



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Guided Tour 

Copyright © 2002 Poppendieck.LLC  Introduction - 7  Last Updated February 2, 2003 
  

3. Decide as Late as Possible 

Development practices that provide for late decision-making are effective in 
domains that involve uncertainty, because they provide an options-based ap-
proach.  In the face of uncertainty, most economic markets develop options 
to provide a way for investors to avoid locking in decisions until the future is 
closer and easier to predict.  Delaying decisions is valuable because better de-
cisions can be made when they are based on fact, not speculation.  In an 
evolving market, keeping design options open is more valuable than commit-
ting early.  A key strategy for delaying commitments when developing a 
complex system is to build a capacity for change into the system. 

4. Deliver as Fast as Possible 

Until recently, rapid software development has not been valued; taking a 
careful, don’t-make-any-mistakes approach has seemed to be more impor-
tant.  But it is time for ‘speed costs more’ to join ‘quality costs more’ on the 
list of debunked myths.13  Rapid development has many advantages.  With-
out speed you cannot delay decisions.  Without speed you do not have reli-
able feedback.  In development, the discovery cycle is critical for learning:  
Design, implement, feedback, improve.  The shorter these cycles are the 
more that can be learned.  Speed assures that the customer gets what they 
need now, not what they needed yesterday.  It also allows them to delay mak-
ing up their mind about what they really want until they know more.  Com-
pressing the value stream to as short a service time as possible is a fundamen-
tal lean strategy for eliminating waste. 

5. Empower the Team 

Top-notch execution lies in getting the details right, and no one understands 
the details better than the people who actually do the work.  Involving pro-
grammers in the details of technical decisions is fundamental to achieving ex-
cellence.  The people on the front line combine the knowledge of the minute 
details with the power of many minds.  When equipped with necessary ex-
pertise and guided by a leader, they will make better technical decisions and 
better process decisions than anyone can make for them.  Because decisions 
are made late and execution is fast, it is not possible for a central authority to 

                                                 
13 Womack, The Machine That Changed the World (1991) p 111  



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Guided Tour 

Copyright © 2002 Poppendieck.LLC  Introduction - 8  Last Updated February 2, 2003 
  

orchestrate activities of workers.  Thus, lean practices use pull techniques to 
schedule work, and contain local signaling mechanisms so workers can let 
each other know what needs to be done.  In lean software development, the 
pull mechanism is an agreement to deliver increasingly refined versions of 
working software at regular intervals.  Local signaling occurs through visible 
charts, daily meetings, frequent integration and comprehensive testing. 

6. Build Integrity In 

A system is perceived to have integrity when a user thinks – “YES!  That is 
exactly what I want.  Somebody got inside my mind!”  Market share is a 
rough measure of perceived integrity for products, because it measures cus-
tomer perception over time.14  Conceptual integrity means that the system's 
central concepts work together as a smooth, cohesive whole, and it is a criti-
cal factor in creating perceived integrity.15  Software needs an additional level 
of integrity – it must maintain its usefulness over time.  Software is usually 
expected to evolve gracefully as it adapts to the future.  Software with integ-
rity has a coherent architecture, scores high on usability and fitness for pur-
pose, is maintainable, adaptable and extensible.  Research has shown that in-
tegrity comes from wise leadership, relevant expertise, effective communica-
tion and healthy discipline; processes, procedures, and measurements are not 
adequate substitutes. 

7. See The Whole    

Integrity in complex systems requires a deep expertise in many diverse areas. 
One of the most intractable problems with product development is that ex-
perts in any area (e.g. database or GUI) have a tendency to maximize the 
performance of the part of the product representing their own specialty, 
rather than focusing on overall system performance.  Quite often, the com-
mon good suffers if people attend first of all to their own specialized inter-
ests.  When individuals or organizations are measured on their specialized 
contribution, rather than overall performance, sub-optimization is likely to 
result.  This problem is even more pronounced when two organizations con-
tract with each other, because people will naturally want to maximize the 
performance of their own company.  It is challenging to implement practices 

                                                 
14 Clark, “The Power of Product Integrity” (1994) p 278. 
15 Brooks, Mythical Man Month (1995) p 255 



Lean Development  Thinking Tools for Agile Software Development Leaders    

Introduction Guided Tour 

Copyright © 2002 Poppendieck.LLC  Introduction - 9  Last Updated February 2, 2003 
  

that avoid sub-optimization in a large organization, and an order of magni-
tude more difficult when contracts are involved. 

This book was written for software development managers, project managers, 
and technical leaders.  It is organized around the seven principles of lean think-
ing.  Each chapter discusses the lean principle and then provides thinking tools to 
assist in translating the lean principle to agile software development practices that 
match the needs of individual domains.  At the end of each chapter are practical 
suggestions for implementing the lean principle in a software development or-
ganization.  The last chapter is an instruction and warranty card for using the 
thinking tools in this toolkit. 

 


