
Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 1 Last Updated February 2, 2003

Chapter 2 – Amplify Learning

The Nature of Software Development

The origins of lean thinking lie in production, but lean principles are broadly
applicable to other disciplines. However, lean production practices – specific
guidelines on what to do – cannot be transplanted directly from a manufacturing
plant to software development. Many attempts to apply lean production prac-
tices to software development have been unsuccessful, because generating good
software is not a production process, it is a development process.

Development is quite different than production. Think of development as creat-
ing a recipe, and production as following the recipe. These are very different
activities, and they should be carried out with different approaches. Developing a
recipe is a learning process involving trial and error. You would not expect an
expert chef’s first attempt at a new dish to be the last attempt. In fact, the whole
idea of developing a recipe is to try many variations on a theme and discover the
best dish.

Once a chef has developed a recipe, preparing the dish means following the
recipe. This is equivalent to manufacturing, where the objective is to reproduce a
‘recipe’ faithfully many times with a minimum of variation. The difference
between development and production is outlined in table 2-1.1

Development Production
Designs the Recipe Produces the Dish
ü Quality is fitness for use ü Quality is conformance to requirements
ü Variable results are good ü Variable results are bad
ü Iteration generates value ü Iteration generates waste (called rework)

Table 2 -1. Development vs. Production

Perspectives on Quality

In production, quality is defined as conformance to requirements specified in the
design or ‘recipe’. In the service industry, a different perspective on quality has
emerged.

1 See Ballard, ‘Positive vs Negative Iteration in Design’ (2000)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 2 Last Updated February 2, 2003

The Service View of Quality

Walt Disney designed Disneyland as a giant stage where several hundred actors
make it their job to be sure every guest has a wonderful time. One guest’s re-
quirements for ‘having a wonderful time’ are quite different from the next, and
the actors are supposed to figure out exactly what each guest thinks a quality
experience should be, and make sure they have it.

Quality at Disneyland

At Disneyland, even the tram drivers are actors. A friend told me the
story of a tram driver who noticed a small girl crying on her way back to
the Disneyland hotel. He asked her why she was crying, and found out
that the crowd around Mickey Mouse was too large, so the girl had not
been able to talk to him. He called ahead, and when the tram arrived at
the hotel, there was Mickey Mouse, waiting to meet it. The girl was
thrilled, and the driver had done his job of making sure she had a quality
experience.

 – Mary

The service view of quality takes into account that every customer has a different
idea of what constitutes a quality experience. In a service economy, quality does
not mean conformance to a script; it means adapting to meet the changing
expectations of many different customers.2

Quality in Software Development

Quality in software development results in a system with both perceived integrity
and conceptual integrity. Perceived integrity means that the totality of the prod-
uct achieves a balance of function, usability, reliability and economy that delights
customers.3 Conceptual integrity4 means that the system's central concepts work
together as a smooth, cohesive whole. We devote Chapter 6 to the important
topic of software integrity.

2 See Prahalad, ‘The New Meaning of Quality in the Information Age’ (1999) and Prahalad, The

Dynamic Synchronization of Strategy and Information Technology’ (2002)
3 The definition of perceived and conceptual integrity is adapted Clark, Product Development

Performance (1991) p 30
4 A term found in Brooks, Mythical Man Month (1995) p 42

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 3 Last Updated February 2, 2003

Customers of a software system will perceive integrity in a system if it solves their
problem in an easy-to-use and cost-effective manner. It does not matter whether
the problem is poorly understood, changes over time, or is dependent on outside
factors; a system with perceived integrity is one that continues to solve the prob-
lem in an effective manner. Thus, quality in design means realization of purpose
or fitness for use rather than conformance to requirements.

Variability

When you think of quality in a service business such as Disney World, the one
thing you can count on is that each customer will have different expectations.
True, the theme park has to be clean and the rides have to work, but if you tried
to provide one experience to all customers, your theme park would not be widely
popular. The difference between providing a service and manufacturing a prod-
uct is that in service, dynamically shifting customer expectations require varia-
tion, while in manufacturing, variation is the enemy. Manufacturing assumes a
homogeneous, unchanging set of customer expectations, so the objective is to
make a product the same way every time.

Somehow, the idea that variation is bad has found its way into software develop-
ment, where people have tried to develop standardized processes to reduce varia-
tion and achieve repeatable results every time. But development is not intended
to produce repeatable results; development produces appropriate solutions to
unique customer problems.

Design Cycles

It was once thought that good programmers develop software though a struc-
tured, top-down approach.5 In 1990, Raymonde Guindon evaluated the para-
digm that top-down decomposition is the best approach to software design. She
reported on research in which experienced designers were asked to design an
elevator control system, while describing each step of their thought process to
researchers. She found that when experienced designers are presented with ill-
defined problems, their design activities are not at all top-down. They move
repeatedly between scenario examination, requirements elucidation, high-level

5 See Yourdon (1979), particularly the articles: ‘Structured Programming’ by Dijkstra and ‘On the

Composition of Well-Structured Programs’ by Niklaus Wirth. See also Brooks (1995) p 143.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 4 Last Updated February 2, 2003

solution segmentation, and low-level design of difficult elements. (See Figure 2 -
1.)

Figure 2-1. Design Activity6

Guindon found that cycling between high-level design and detailed solution was
typical of good designers when dealing with ill-structured prob lems, that is,
problems that do not have a single right answer or a best way to arrive at a solu-
tion. She theorized that this unstructured approach is necessary to understand
and give structure to such problems.7

The bulk of the work of software development is a problem-solving activity
similar to that investigated by Guindon. Software problems are solved at many
levels, by all members of the development team. Software architects are clearly
involved in a design activity, but so are developers who write the code. The
process of writing code involves deep problem understanding, recognition of

6 From Guindon, ‘Designing the Design Process’ (1990) p 319. Used with Permission.
7 Guindon, ‘Designing the Design Process’ (1990)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 5 Last Updated February 2, 2003

patterns from experience, experimentation with various approaches, testing the
results, and determination of the best approach.

Today it is widely accepted that design is a problem-solving process that involves
discovering solutions through short, repeated cycles of investigation, experimen-
tation, and checking the results. Software development, like all design, is most
naturally done through such learning cycles.

Do It Right the First Time?

In order to solve problems that have not been solved before, it is necessary to
generate information. For complex problems, the preferred approach to a solu-
tion is to use the scientific method: observe, create a hypothesis, devise an ex-
periment to test the hypothesis, run the experiment, and see if the results are
consistent with the hypothesis. One of the interesting features of the scientific
method is that if your hypothesis is always correct, you are not going to learn very
much. The maximum amount of information is generated when the probability
of failure is 50 percent, not when the hypotheses are always correct. It is neces-
sary to have a reasonable failure rate in order to generate a reasonable amount of
new information.8

There are two schools of thought in developing software. One is to encourage
developers to be sure that each design and each segment of code is perfect the
first time. The second school of thought holds that it is better to have small,
rapid try-it test-it fix-it cycles than it is to make sure the design and code are
perfect the first time. The first school of thought leaves little room for knowl-
edge generation through experimentation; instead, it believes that knowledge
generation should happen through deliberation and review. The right the first
time approach may work for well-structured problems,9 but the try-it test-it fix-it
approach is usually the better approach for ill-structured problems.

If the right the first time approach is preferred in your organization, you might ask
yourself why this is a value. As Yourdon points out, “a piece of program logic
often needs to be rewritten three or four times before it can be considered an

8 Reinertsen, Managing the Design Factory (1997) p 71
9 Well-structured problems have a single right solution and a preferred approach to arriving at the

solution. For example, most problems children encounter in elementary school are well-
structured problems.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 6 Last Updated February 2, 2003

elegant, professional piece of work.” Why, he asks, do we object to revising
programming logic when we are quite happy to re-write prose three or four times
to achieve a professional result?10

Your objective should be to balance experimentation with deliberation and re-
view. In order to do this, consider how you can generate the most knowledge at
the least cost in your circumstances. For instance, if the cost of testing is very
high, you will want more knowledge to be generated through deliberation and
review. If experimentation is relatively inexpensive and yields better knowledge
faster, then it is the least expensive, most effective approach. Usually some
combination of experimentation, peer review and iteration will yield the best
results.

Learning Cycles

Quite often, the problem to be solved is understood best by the people in the
business with the problem, so it is usually necessary to have business people – or
representatives such as focus groups – in the knowledge-generation loop. In this
case, it is important to speak to the business people with a representation they
readily grasp, or the knowledge generation will be inefficient. There are many
ways to represent the system, from models to prototypes, to incremental deliver-
ies, but the important thing is to select the representation that gathers the most
knowledge. Most users relate better to seeing working screens than to a require-
ments document, so working software tends to generate better knowledge faster.

Iterations with refactoring – improving the design as the system develops – have
been found to be one of the most effective ways to generate knowledge, find
answers early, and generate a system with integrity, because this approach gener-
ates knowledge most effectively for ill-defined problems. The important ques-
tion in development is ‘How can I learn most effectively?’ The answer is often to
have many, short learning cycles. If you ask instead ‘How can I minimize the
number of learning cycles?’ you are likely to get long cycles, large batches, long
feedback loops, and as a result, ineffective learning.

10 Yourdon, Classics in Software Engineering (1979) p151

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 7 Last Updated February 2, 2003

The True Story of a Death March Project – Part 2: Weekly Iterations

As the first installment of this drama drew to a close in Chapter 1, we
had just released a very shaky system to production in a mission-critical
area. Only half of the features worked, but the law required the new
logic, so against our better judgment, we went live. The customer agreed
to work around missing features manually, while we agreed to release
new capabilities to the system every week.

We made a list of missing features and known defects, which we called a
punch list. Every week we had the customer review and prioritize the
list. On Friday, the developers selected from the top of the punch list
those features that they thought they could complete in a week. Users
ran a lengthy, manual regression test on the new release the following
Thursday, and usually we had to re-build and re-test on Friday. We did
not allow new features into the build after the first regression test, so we
usually could release the build to production after the second regression
test. If not, we tested over the weekend. Almost every Monday morning
for three months, a new release went into production. Generally scripts
were run on the database as part of the release, so once production
started, there was no going back to the previous release.

Releasing a new version of a mission-critical system to 100 users every
week, with no fallback, seems like a high risk approach. But we never
had a disaster and the weekly releases caused remarkably few problems.
The discipline of the regression testing coupled with the small incre-
ments of functionality worked like magic. Development and testing was
done at the customer site, so if there were questions or problems, feed-
back was immediate.

Once most of the features were delivered, the customers no longer
wanted the hassle of weekly regression tests, so the iterations stretched to
two or three weeks. We found that it was devilishly difficult to pass re-
gression testing with the longer increments. As release intervals
stretched out, it became tempting to add just one last feature to a release
even after its first or second regression test. This was invariably a mis-
take, making another build and more testing necessary, causing the inter-
val to stretch out, making it more tempting to add more features to the
current release. Stretching out intervals was a vicious circle.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning The Nature of Software Development

Copyright © 2002 Poppendieck.LLC Page 2 - 8 Last Updated February 2, 2003

Things never went so well as during that heady time when things were so
bad that weekly production releases seemed to be the only option. As
the urgency faded and we lengthened the feedback cycle, it got more and
more difficult for a new release to pass the regression tests. We never
were able to automate the regression tests, but were we to do this over
again, that would be the first step.

 – Mary

Tool 3 – Feedback

It’s two in the morning and you are driving home. The traffic light is red, and
there’s not another car in sight. But the traffic light is red, so you stop. And
wait. And wait. Finally, the light changes, after allowing time for lots of non-
existent cross-traffic. You think to yourself, “It’s going to be a long drive home”.
And sure enough, the next light is also red. But as you approach the light, it
turns green. “Ah HA!” You think to yourself. “An automatic sensor. That light
is smart enough to know I’m here and there’s no one else around. I hope the rest
of the lights are like that!”

The difference between the two lights is feedback. The first light was pre-
programmed based on the assumption that there will be three times as much
traffic on the main road as on the side road, so you sat through a long light. The
second light had sensors buried throughout the intersection and was programmed
to adjust its cycle based on traffic patterns as they vary throughout the day and
night.

Figure 2-2 shows how the first traffic signals works.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 9 Last Updated February 2, 2003

Figure 2-2. Timed Traffic Light

Figure 2-3 shows how the second traffic signal works.

Figure 2-3. Traffic Signal with Sensors

Notice that the second set of traffic signals have more components, more logic,
and more things to go wrong. But traffic lights with feedback are desirable
despite their increased complexity. Feedback adds considerable value, and thus it

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 10 Last Updated February 2, 2003

is very common. Your home heater and air conditioner are controlled with a
feedback loop, as is your oven. Figure 2 -4 shows a feedback loop for an oven:

Figure 2-4. Oven

In a steel mill or a tape manufacturing plant, there are many variables to control:
speed, pressure, heat, thickness. The formula for making tape or steel includes a
setpoint for each variable. Operators or computers dial in the setpoint, and then
a feedback loop provides the control for each variable. It is rare to find control
without feedback, because feedback gives much better control and predictability
than attempting to control complicated processes with pre-defined algorithms.

Software Development Feedback Loops

There are many unforeseeable events in developing software, so why would
anyone think that software systems should be developed without feedback loops?
Winston Royce proposed a sequential software design process in 1970 which
closely resembled the sequential product development processes of the time. He
advocated creating detailed documentation at each step, but also pointed out that
waiting to test the system until the end was not practical, because the feedback
provided by testing was needed early in the development process. Therefore he
suggested that an early prototype be built to provide feedback. 11

11 See Royce, ‘Managing the Development of Large Software Systems’ (1970) Figure 7.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 11 Last Updated February 2, 2003

Figure 2-5. Original Royce “Waterfall” Recommendation

In 1975, Fred Brooks wrote: “Plan to throw one away; you will anyhow.”12
Brooks retracted this in 1995, saying: “Don’t build one to throw away – the
waterfall model is wrong.”13 He notes that his original quote implicitly assumed
a sequential development process, while it has become clear that a incremental
model with progressive refinement is the proper approach.14

As actually implemented, the sequential, or waterfall, development model does
not usually provide for much feedback; it is generally thought of as a single pass
model. This can be called a deterministic model because it assumes that the
details of a project are determined at the beginning. A deterministic model is
favored by project management disciplines that have their origins in contract
administration. The contract-inspired model of project management generally
favors a sequential development process with specifications fixed at the start of
the project, customer sign-off on the specifications, and a change authorization
process intended to minimize changes. There is a perception that these processes

12 Brooks, Mythical Man Month (1995) p116
13 Brooks, Mythical Man Month (1995) p 264
14 Brooks, Mythical Man Month (1995) p 267

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 12 Last Updated February 2, 2003

give greater control and predictability, although sequential development processes
with low feedback have a dismal record in this regard.15

Traditional project management approaches often consider feedback loops to be
threatening because there is concern that the learning involved in feedback might
modify the pre-determined plan. The conventional wisdom in project manage-
ment values managing scope, cost, and schedule to the original plan. Sometimes
this is done at the expense of receiving and acting on feedback that might change
the plan; sometimes it is done at the expense of achieving the overall business
goal. This mental model is so entrenched in project management thinking that
its underlying assumptions are rarely questioned. This might explain waterfall
model of software development is so difficult to abandon.

Imagine Deterministic Cruise Control

You are driving along the highway. You get up to the speed you want to
go, turn on the cruise control and push set. The car has a control loop
which operates every few seconds, checking the actual speed of the car
against the speed you set (the setpoint). If the car speed is less than the
setpoint, the cruise control depresses the accelerator a bit. If the speed is
higher than the setpoint, the cruise control lets up on the accelerator.

Imagine driving a car where the position of the accelerator was prepro-
grammed at the factory. If you want to go 60 mph, it moves the accel-
erator to position A; if you want to go 65 mph, it moves the accelerator
to position B and so on. This might work on flat terrain, but when it
gets to a steep hill the car would slow to a crawl. Upon reaching the top,
the car would careen dangerously fast down the other side.

Deterministic control simply does not work when there is variability in
the terrain.

When an organization has software development challenges, there is a tendency
to impose a more ‘disciplined’ process on the organization. The prevailing con-
cept of a more disciplined software process is one with more rigorous sequential
processing: requirements are documented more completely, all agreements with
the customer are written, changes are controlled more carefully and each re-

15 Johnson, Keynote Third International Conference on Extreme Programming (2002)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 13 Last Updated February 2, 2003

quirement must be traced to code. This amounts to imposing additional deter-
ministic controls on a dynamic environment, lengthening the feedback loop. Just
as control theory predicts, this generally makes a bad situation worse.

In most cases, increasing feedback, not decreasing it, is the single most effective
way to deal with troubled software development projects and environments.

ü Instead of letting defects accumulate, run tests as soon as the code
is written.

ü Instead of adding more documentation or detailed planning, try
checking out ideas by writing code.

ü Instead of gathering more requirements from users, show them an
assortment of potential user screens and get their input.

ü Instead of studying more carefully which tool to use, bring the top
three candidates in-house and test them.

ü Instead of trying to figure out how to convert an entire system in a
single massive effort, create a web front end to the legacy system
and try the new idea out.

Whenever a person does work, they should be doing it for an immediate customer;
that is, they should have someone, somewhere, eager to make use of the results of
their work. Everyone should know their immediate customer and have ways for
that customer to give them regular feedback. When a problem develops, the first
thing to do is to make sure the feedback loops are all in place; that is, make sure
everyone knows who their immediate customer is. The next thing to do is to
increase the frequency of the feedback loops in the problem areas.

The True Story of A Death March Project – Part 3: Amplifying Feedback

When I took over the project, it was stuck. The design was supposed to
be done, but there were no designers on the team. No one could agree
on what constituted an appropriate design format. The analysts did not
know what to do, and the programmers did not find the existing docu-
ments detailed enough to work from. Wheels were spinning, but noth-
ing was happening.

I was new, so I could change things. I asked the analysts to choose a
small part of the system and take a day to write use cases, then sit down

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 3 – Feedback

Copyright © 2002 Poppendieck.LLC Page 2 - 14 Last Updated February 2, 2003

with the developers and see if the use cases were useful. Working to-
gether, the analysts and developers were to discover the level of detail
needed in a use case that was possible for the analysts to provide and suf-
ficient for programming to proceed. Then the developers were to write
code for the small part of the system and have analysts test it to see if it
was what they had in mind.

After two weeks the log jam was broken and code started flowing. The
analysts developed a style of writing use cases that the developers found
useful, and the developers started holding regular meetings with the ana-
lysts so they could ask questions that were not covered in the use cases.
It was a start.

 – Mary

Tool 4 – Iterations

If a manufacturer wants to start applying lean production principles, there is one
starting point that always works – use just-in-time inventory flow. The simple
act of working to fill customer orders rather than working to meet a schedule
drives a host of other improvements. One reason just-in-time flow is so effective
is that it requires significantly improved worker-to-worker communication and
surfaces quality problems as soon as they occur.

In concurrent product development, which we will discuss in the next chapter,
there is an equivalent universal starting point that always works – drive the effort
with prototypes at closely placed milestones. A prototype synchronizes efforts
toward a well-understood short term goal without the need for detailed schedul-
ing. Regular prototype milestones make concurrent product development possi-
ble because they provide a focal point around which cross-functional communica-
tion can and must occur. Prototypes also provide early feedback on design prob-
lems and customer preferences.

There is an equivalent universal starting point for all agile software development
approaches: iterations. An iteration is a useful increment of software that is
designed, programmed, tested, integrated, and delivered during a short, fixed
timeframe. It is very similar to a prototype in product development, except that

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 15 Last Updated February 2, 2003

an iteration produces a working portion of the final product. This software will
be improved in future iterations, but it is working, tested, integrated code from
the beginning. Iterations provide a dramatic increase in feedback over sequential
software development, thus providing much broader communication between
customers/users and developers and among various people who have an interest
in the system. Testers are involved from the first iteration; hardware and soft-
ware environments are considered early. Design problems are exposed early, and
as changes occur, change-tolerance is built into the system.

There are three fundamental principles at work here. First, as we will see in
Chapter 4, small batches moving rapidly through a system lead to all manner of
good things. Small batches enforce quality and worker-level communication,
while allowing for greater resource utilization. They provide short feedback
loops, which enhances control. For this reason, short, complete iterations are as
fundamental to lean development as small batches are to lean manufacturing.

Second, short iterations are an options-based approach to software development.
They allow the system to respond to facts rather than forecasts. There are few
endeavors in which it is more important to keep options open than software
development. In Chapter 3 we see that options-based approaches are fundamen-
tally risk-reduction strategies, and as counterintuitive as it may sound, you actu-
ally reduce your risk by keeping options open, rather than freezing design early. 16

Finally, iterations are points of synchronization across individual and multiple
teams and with the customer. Iterations are the points when feature sets are
completed and the system is brought as close to possible to a ‘releasable’ or ‘ship-
pable’ state – even if it will not actually be released. Thus iterations force deci-
sions to be made. Frequent points of synchronization allow teams to work
independently, yet never stray far from the work of other teams or the interests of
customers and users.

16 See Thimbleby, ‘Delaying Commitment,’ (1988) pp 78-86.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 16 Last Updated February 2, 2003

Iteration Planning17

What work should be done in each iteration? The idea is to implement a coher-
ent set of features in each iteration. A feature is something that delivers mean-
ingful business value to the customer but is small enough that the team can
confidently estimate how much effort delivering it will require. If a feature can‘t
be done in a single iteration, it should be broken down into smaller features.
Features come from customers or customer representatives in the form of use
cases or stories or backlog items.18

At the beginning of each iteration, a planning session occurs at which the devel-
opment team estimates the level of difficulty of the features under consideration
and the customers or customer representatives decide which features are most
important, given their estimated cost. The highest priority features should be
developed first, in order to deliver the highest business value first. High-risk
items should be addressed earlier rather than later.

An iteration should have a fixed time-box. Some people suggest keeping all
iterations to the same length, to establish a rhythm. Others vary the iteration
length based on local circumstances. How long should the iteration time-box be?
It should be long enough to support a meaningful design-build-test cycle, and
short enough to provide frequent feedback from customers that the system is on
track. Some people feel a one-month time-box is ideal. Others suggest time-
boxes of a couple of weeks. Some companies use six to ten week time-boxes, but
these are coupled with daily builds and extensive weekly testing.

The development team must be free to accept only the amount of work for an
iteration than team members believe they can complete within the time-box.
Customers will probably want to load iterations with lots of features, but it is
important to resist the temptation to be accommodating at the expense of setting
unreasonable expectations. If iterations are short and delivery is reliable, custom-
ers should be content to wait for the next iteration. If a development team over-

17 See Schwaber, Agile Software Development with Scrum (2002) pp 47-50 for a discussion of

planning a sprint in Scrum. Beck, Extreme Programming Explained (2001) Chapters 17 and 18
discuss iteration planning in eXtreme Programming.

18 The best reference on use cases is Cockburn, Writing Effective Use Cases (2000). Stories are used
in eXtreme Programming. See Beck, Extreme Programming Explained (2000) A backlog List is
used in Scrum. See Schwaber, Agile Software Development with Scrum (2002).

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 17 Last Updated February 2, 2003

commits –which often happens to inexperienced teams – it is best to deliver some
of the features on time rather than all of them late.

Team Commitment

A development team can evaluate a list of features and with a little bit of investi-
gation, they can come up with a good idea of what they can do in few weeks or a
month. If you ask a team to choose items from the top of a list that they believe
they can do in a short time-box, they will probably choose and commit to a
reasonable set of features. Once the team has committed to a set of features that
they think they can complete, they will probably figure out how to get those
features done within the time-box.

A team should not be expected to set and meet time-box goals without organiza-
tional support.19

ü The team must be small and be staffed with the necessary expertise. Some
team members must be experienced in the domain and some in each critical
technology.

ü The team must have enough information about requested features to be able
decide what is feasible to accomplish in the time-box.

ü The team must be assured of getting the resources it needs.

ü Team members must have the freedom, support, and skill to figure out for
themselves how to meet their commitments.

ü The team must have or create the basic environment for good pro-
gramming:

→ Automated build process
→ Automated testing
→ Coding standards
→ Version Control Tool
→ Etc.

19 See Schwaber, Agile Software Development with Scrum (2001)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 18 Last Updated February 2, 2003

Good iteration planning gives customers a way to ask for features that are impor-
tant to them, while creating a motivating environment for the development team.
The best part about these benefits is that they feed upon success. As customers
see the features they regard as highest priority actually implemented in code, they
start to believe the system is going to be real and begin to envision what it can do
for them. They become comfortable that features scheduled for future iterations
will actually be delivered. At the same time, developers gain a sense of accom-
plishment, and as customers begin to appreciate their work, they are even more
motivated to satisfy the customers.

Convergence

Iterations sound like a good idea, yet there is a significant reluctance to use them.
The reason behind this can often be traced to a fear that the software develop-
ment effort will not converge. There is a concern that the project will continue
on indefinitely if it does not have a predefined stopping point.20 This is a valid
concern; how can you be sure that any system with a feedback loop will converge
on a solution? In fact, books on control theory have more pages on convergence
than on any other topic. It is not a concern to be taken lightly.

A fluid business situation might send unpredictable and constantly changing
signals to the software development process. It is not unusual for a situation
called thrashing to develop, that is, the feedback changes so fast the system
doesn’t have time to complete one response before being told to go in the oppo-
site direction.

Consider a thermostat. It does not turn on the furnace the moment the room
temperature falls below the setpoint, and then turn it off the moment the tem-
perature rises above the setpoint. If this happened, the furnace would cycle on
and off constantly, something that is not good for furnaces. Instead, the thermo-
stat turns on heat when the temperature falls a couple of degrees below the
setpoint, and leaves the furnace on until the temperature is a degree or two above
the setpoint.

An iterative software development process achieves this same effect by limiting
customer requests for feature changes to the beginning of each iteration. During
the iteration, the team concentrates on delivering the features they committed to

20 Highsmith, Adaptive Software Development (2000) p 87

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 19 Last Updated February 2, 2003

at the beginning of the iteration. If the iterations are short – 2-4 weeks – the
feedback loop is still quite short.

Delaying response to feedback must be handled with care; long delays in feed-
back tend to cause system oscillation. Convergence requires small, frequent
adjustments. For example, a cruise control adjusts the accelerator only slightly
when the car falls below the desired speed. Similarly, if software is delivered in
small, frequent increments, the customer can see business value increasing with
each increment and make adjustments on a regular basis. Delivering large incre-
ments on an infrequent basis is far more likely to produce oscillations than ac-
cepting frequent feedback.

There is an optimal window for feedback – it should be as short as possible
without being so short as to create thrashing. The optimal size of this window
depends on the dynamics of the situation, but in general, environments that are
more dynamic require more rapid feedback. Some have found that larger teams
do better with more frequent feedback, because if a large team gets off track, it is
more difficult to reverse direction.

Negotiable Scope

A good strategy for achieving convergence is to work on top priority items first,
leaving the low priority items to fall off the to-do list. By delivering high priority
features first, it is likely that you will deliver most of the business value long
before the customer’s wish list is completed. Here comes the tricky part. If you
are working under the expectation that development is not complete until a fixed,
detailed scope is achieved, then the system may indeed not converge. So it’s best
to avoid this expectation, either by stating at the front that scope is negotiable, or
by defining scope at a high level so it is negotiable in detail. With negotiable
scope, iterative development will generally converge.

Why should a customer accept the idea of negotiable scope? In the introduction
to this book, we told the story of how Florida and Minnesota each set out to
develop a SACWIS (Statewide Automated Child Welfare Information System).
The systems are quite similar, but the Florida system will take about 15 years and
cost about $230 million, while the Minnesota system was completed in two years
at the cost of $1.1 million. This vast difference in time and cost for developing

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 20 Last Updated February 2, 2003

essentially the same system is credited to two factors: Minnesota used a stan-
dardized infrastructure and minimized requirements. 21

A Standish Group study found that 45% of features in a typical system are never
used and 19% are rarely used.22 Since customers often don’t know exactly what
they want at the beginning of a project, they tend to ask for everything they think
they might need, especially if they think they will get only one shot at it. This is
one of the best ways we know to increase the scope of a project well beyond what
is necessary to accomplish the project’s overall mission.

If you let customers ask for just their highest priority features, then deliver them
quickly, and ask for the next highest priority, you are more likely to get short lists
of what is important. Moreover, you can respond to their changing circum-
stances. Therefore, it is usually a good idea to work down a prioritized feature
list from the top. In general, this strategy will accomplish the overall mission by
the time the allocated resources are up.

This approach to project management may seem to lead to unpredictable results,
but quite the opposite is true. Once a track record of delivering working software
is established, it is easy to project how much work will be done in each iteration
as the project proceeds. By tracking the team velocity, you can forecast from past
work how much work will probably be done in the future. Velocity measure-
ments are significantly more accurate tools than scope-based controls, because
they are measuring how much time it actually took to deliver complete, tested,
releasable code at the end of each iteration. You know exactly where things stand
after only a few iterations, which provides highly reliable early predictions of
project performance.

It is a good idea to make progress visible, both to the development team and the
customer. One way to do this is with burn-down charts.23 Let’s assume that you
develop a high level list of features to be delivered, and make a preliminary esti-
mate of the development time of each feature. You add all the estimated times
and get a time-to-complete number, say 500 staff days. Assume for simplicity
that your iterations are one month long. After the first iteration, the customer

21 Johnson, Keynote, Third International Conference on Extreme Programming (2002)
22 Johnson, Keynote, Third International Conference on Extreme Programming (2002)
23 More detail on using burn-down charts can be found in Schwaber, Agile Software Development

with Scrum (2001) pp 63-68.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 21 Last Updated February 2, 2003

may have added more items, and the team will have completed some items. You
add up the time to complete and notice that it is actually larger than the month
before, say 620 staff days. After 4 months, your graph might look like the left
hand burn-down chart in Figure 2-6, which shows that the system is not con-
verging very fast:

Figure 2-6 Burn-down Charts

If you expect the system to be done in nine months, you should be seeing conver-
gence more like the right hand burn-down chart in Figure 2-6. Since that is not
what is happening, you know after a couple of months that action is necessary. If
the customer is adding new features as fast as the team is completing others, it is
time to consider deleting features from the list. If the team is bogging down, it is
time to get them help. In any case, this kind of burn-down chart gives actionable
data to all parties, so that convergence – or lack thereof – is visible early in the
project.

Another chart commonly used to show convergence in agile software develop-
ment is a chart showing the rate at which acceptance tests – and thus features –
are being added to the system, and the rate at which these tests have passed. For
an example, see Figure 2-724

24 See Jeffries, Extreme Programming Installed (2001) p 139

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 4 – Iterations

Copyright © 2002 Poppendieck.LLC Page 2 - 22 Last Updated February 2, 2003

Figure 2-7. Acceptance Tests Written and Passed.

Tool 5 – Synchronization

Iterations are planned by selecting features that are important to customers, and
if multiple teams are involved, they generally divide the work by feature. One of
the problems with a feature-based approach to software development is that a
feature will most likely involve several different areas of the code. Traditionally,
the integrity of a module was ensured by having only one developer, who under-
stood it clearly, assigned to work on it. Most agile approaches recommend
common ownership of code, although Feature Driven Development (FDD)
maintains individual ownership of modules, or classes.25 Since individual features
require several different classes to be modified, FDD forms feature teams consist-
ing of the relevant class owners.

Any place where several individuals are working on the same thing, a need for
synchronization occurs. So in FDD, synchronizing the several people working
on a feature is necessary, while common code ownership requires that several
people working on the same piece of code must be synchronized. The need for
synchronization is fundamental to any complex development process.

25 Plamer, A Practical Guide to Feature-Driven Development (2002) pp 42-44

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 5 – Synchronization

Copyright © 2002 Poppendieck.LLC Page 2 - 23 Last Updated February 2, 2003

The same problem occurs in automobile design. A slight change in hood slope
for better aerodynamics might have an impact on the shape of the front fenders
or the layout of components under the hood. When things get complicated in
automotive design, there is no substitute for building a mock-up to see how
things actually fit together. Toyota builds far more prototypes than most other
automakers, because they are such an effective way to rapidly synchronize the
efforts of many people.

Synch and Stabilize26

In a software development environment with collective code ownership, the idea
is to build the system every day, after a very small batch of work has been done by
each of the developers. In the morning, developers check out source code from a
configuration management system, make changes, test their changes in a ‘private
build,’ check to see if anyone else has made change to the same code, and if so,
check for conflicts, then check in the new code. At the end of the day, a build
takes place, followed by a set of automated tests. If the build works and the tests
pass, the developers have been synchronized. This technique is often called the
daily build and smoke test.

There are many variations on this theme: a build might occur every few days, or
it might run every time new code is checked in. More frequent builds are better;
they provide much more rapid feedback. Builds and build tests should be auto-
mated. If they are not, the build process itself will introduce errors and the
amount of manual work will prohibit sufficiently frequent builds.

Sometimes the build is of the whole system; sometimes only subsets of the sys-
tem are built, because the whole system is too large. Sometimes an entire suite of
tests is run, sometimes, especially when tests are manual, only some tests are run.
The general principle is that if builds and test suites take too long, they will not
be used, so invest in making them fast. This provides a bias toward more fre-
quent builds but less comprehensive tests, but it is still important to run all the
tests overnight or every weekend.

A standard approach to keeping automated tests reasonable in size is to stub-out
or simulate slow layers to keep up the speed. For example, you probably want to
stub-out database access and the user interface. If you are designing software to

26 See Cusumano, ‘How Microsoft Makes Large Teams Work Like Small Teams’ (1997)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 5 – Synchronization

Copyright © 2002 Poppendieck.LLC Page 2 - 24 Last Updated February 2, 2003

control a device, you will want to simulate the hardware performance as you
develop the system. The span of a build and test operation is an important
development decision.

If the entire system is not spanned in the daily build and smoke test, full system
tests should be run as frequently as possible. Remember the rule of small
batches: if you integrate changes in small batches, it will be infinitely easier to
detect and fix problems. Keep it simple by doing it as often as possible. The goal
should be to have workable code at the end of every day.

Spanning Application27

Another way to synchronize the work of several teams is to start by having a
small ‘advance’ team develop a simple spanning application through the system.
For example, suppose you are converting an insurance system to a new environ-
ment. You might begin by choosing a simple policy type, preferably one with
low volume. The advance team develops a spanning application for that type of
policy all the way through the system. This includes establishing a new policy,
renewing the policy, handling a claim, and terminating the policy. If possible,
the spanning application should go into production when it’s done.

Once the spanning application is developed, you have in effect driven a nail
through the system, sort of like a carpenter positioning a piece of wood. When
the spanning application is proven in production, you know you have a workable
approach. At this point, multiple teams can use the same approach and drive in
many nails at the same time.

A spanning application works well to test various commercial components. Say
you have three possible vendors for middleware, and you are not quite sure which
one will really work in your environment. By having a small team build a simple
spanning application, you can get a real understanding of the strengths and
weakness of each possibility before you commit to any single solution.

27 There are several different names used for a spanning application. The description here is

modeled after the Thread described Simons, ‘Big and Agile?’ (2002). Hunt, The Pragmatic Pro-
grammer (2000) p 48-52 calls the same concept a Tracer Bullet, Cockburn uses the term Walking
Skeleton, and Hohmann, Beyond Software Architecture (2003) calls it a Spike. In Jeffries, Extreme
Programming Installed (2001) a Spike is an experiment to validate an estimate.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 5 – Synchronization

Copyright © 2002 Poppendieck.LLC Page 2 - 25 Last Updated February 2, 2003

Matrix

A more traditional approach to synchronizing multiple teams is to sketch out an
overall architecture, and then have teams develop separate components or subsys-
tems. This approach is particularly appropriate when the different teams are not
located in the same place, because it allows them to go about their work with a
minimum of communication with other teams. The problem, of course, comes
at the interfaces. When the various team’s components have to work together,
high bandwidth communication is usually necessary to resolve the many detailed
design issues involved. Moreover, if the teams have already developed their
subsystems, they are not going to be eager to change what they have done.

Therefore, the matrix approach starts by developing the interfaces, and then the
subsystems. All points of cross-team interaction should be laid out at the begin-
ning; teams should be assigned to each of these interaction points. The interface
should be developed first, stubbing-out the components to allow the cross-
component software to be demonstrated. After the interfaces are working, the
component teams can work reasonably independently to develop their subsystem.
But they should be integrating their code into the full system regularly, to be sure
that the interface continues to work.

This approach was used by Motorola to design a new communication system.28
Teams from around the world were involved, and each team was responsible for
developing the software in a single piece of hardware. Before the teams got
started with their subsystem designs, they assembled in a single place to study the
overall architecture and define the interactions among the devices. Each link
between devices, called a strata, was identified, and a team, consisting of people
from the two device teams in question, was assigned to each strata. This is
illustrated in figure 2-8 which shows the strata among devices A, B, C, D, and E.

28 See Battin, ‘Leveraging Resources in Global Software Development’ (2001). The cluster concept

in that paper has been renamed strata. This is more fully described in Crocker, Large Scale Agile
Software Development (2003)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 5 – Synchronization

Copyright © 2002 Poppendieck.LLC Page 2 - 26 Last Updated February 2, 2003

Figure 2-8. Implement interfaces first

Each strata was developed and validated independently, focusing principally on
the interactions across devices. They did this by stubbing-out the interaction of
the strata with the individual devices, and focusing on the cross-device communi-
cation first. As the various strata reached some level of maturity, they were
integrated into the devices. This ‘internal’ integration was the easy part, since
each device team was co-located in a particular country, and members were used
to working together.

The beauty of this approach is that the highest risk areas which were likely to
cause the biggest delays and create the biggest communications problems were
the inter-team interactions; these were resolved at the beginning of the project,
when there was plenty of time and there was no prior code to change. The easier
part, the device integration, was saved for later in the project. This technique
provided superior synchronization throughout the project, because a team could
integrate into the overall structure regularly, making sure that whatever they did
inside their team did not compromise the overall system.

Tool 6: Set-Based Development

Set-Based vs. Point-Based

Let’s say you want to set up a meeting. There are two ways to go about it, you
can use a point-based or a set-based approach. Figures 2-9 illustrates the point
based approach: first you choose a meeting time and then you refine it until it
works. Unfortunately, it may take several iterations to find an acceptable meeting
time, and the process may never converge. Figure 2-10 illustrates the set-based
approach: you start by defining everyone’s constraints and then select a meeting

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 27 Last Updated February 2, 2003

time that fits within those constraints. This approach involves considerably less
communication, yet it quickly converges on an acceptable meeting time.

Figure 2-9. Point-Based Scheduling29

Figure 2-10. Set-Based Scheduling30

In set-based development, communication is about constraints, not choices.
This turns out to be a very powerful form of communication, requiring signifi-
cantly less data to convey far more information. In addition, talking about con-
straints instead of choices defers making choices until they have to be made, that
is, until the Last Responsible Moment, which we discuss in Chapter 3.

Let’s consider how constraint-based communication can speed up large-scale
product development. Durward Sobek studied Toyota and Chrysler product
development approaches for his 1997 thesis at the University of Michigan.31 He
found that a primary engineering discipline at Toyota is to maintain and refer to
checklists which record known trade-offs and constraints.

For example, a styling engineer, might want a rear fender section with a dramatic
new look. However, the manufacturing engineer might suspect that the new

29 Diagram from Durward Sobek. Used with permission.
30 Diagram from Durward Sobek. Used with permission.
31 Sobek, Principles That Shape Product Development Systems: A Toyota-Chrysler Comparison (1997)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 28 Last Updated February 2, 2003

design is going to be difficult to manufacture. Instead of expressing a vague
doubt, the manufacturing engineer would send the styling engineer a checklist
showing it the time it takes to stamp body panels with certain characteristics, and
detailing the limits of those characteristics. The checklist isn’t necessarily a list, it
is often a graph of the boundary conditions similar to Figure 2-11. The styling
engineer would examine the checklist along with many similar checklists and
come up with two or three designs that take all of the constraints into considera-
tion.

Figure 2-11. Checklist: Rear Quarter Panel Cross Section Deformity Ratio32

If you were a manufacturing engineer at Chrysler, it is more likely that the styling
engineers would send you one or two possible styles and ask for comments. You
would respond that you think the panel is going to be difficult to manufacture.
At the same time, many other engineers would have problems with the proposed
style, so meetings would be called to resolve the issues. However, once you get a
style you think you can manufacture, perhaps the design of the gas cap will might
have gotten difficult or maybe there is not enough room left for all of the targeted
wheel sizes. More meetings are needed to iron these problems out, which will no
doubt lead to more problems. A never-ending game ensues, reminiscent of
point-based meeting scheduling.

32 Diagram from Durward Sobek. Used with permission.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 29 Last Updated February 2, 2003

Figures 2-12 and 2-13 show how the two approaches work:

Figure 2-12. Point-Based Development33

Figure 2-13. Set-Based Development34

Toyota explores a large number of concepts at the beginning of a vehicle pro-
gram, expending significantly more resources than other automakers. It main-
tains a large number of options throughout the development process and pro-
duces an extraordinarily number of prototypes of subsystems and clay models of
vehicles. Final body dimensions are fixed far later in the development process

33 Diagram from Durward Sobek. Used with permission.
34 Diagram from Durward Sobek. Used with permission.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 30 Last Updated February 2, 2003

than other automakers, and final specifications are released to suppliers very late
in the development process. The quality, popularity, and profitability of the cars
it produces indicate that Toyota’s development process is highly effective.35

Set-Based Software Development

So how do you apply set-based development to software? You develop multiple
options, communicate constraints, and let solutions emerge.

Develop Multiple Options

When you have a difficult problem, try this: develop a set of alternative solutions
to a problem, see how well they actually work, and then merge the best features
of the solutions or choose one of the alternatives. It might seem wasteful to
develop multiple solutions to the same problem, but set-based development can
lead to better solutions faster, as the examples in the sidebars illustrate.

Set-Based Embedded Software Development

A software development manager from a medical device company described to
us how he runs a new program:

The first thing I do is have the user champion describe to a group of
people what problem needs to be solved. Now, I don’t think anyone can
put into words what they really want, so I set a team to working on
maybe a half dozen possibilities. This is the first iteration, and it lasts a
month. Then I have the developers show the champion their work, and
we can narrow down what is really needed to a couple of the prototypes.
At this point, I reduce the team size and have some developers continue
developing the most promising options for the next iteration. Based on
this work, the champion can usually let the developers know exactly what
is needed, and by that time, the work is better than half-done. The
champion is always happy and we get results very fast.

35 Ward, ‘The Second Toyota Paradox’ (1995)

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 31 Last Updated February 2, 2003

Set-Based Technology Selection

A friend from a company that does enterprise applications told us how he made
a critical decision:

We had to choose a technical platform for a system. However, it was not
clear which of the three available options was going to be the winner, let
alone meet our needs. So we started developing on all three. This re-
quired the underlying development to be a bit more general than other-
wise, but it turned out to be quite robust because of that. It was really
not necessary to decide on a platform until quite near to the end of the
project, and by that time, the correct choice was pretty obvious, but it
was not the one we would have made in the beginning.

Set-Based Web Site Design:

A colleague from a company that does web designs for many customers told us
how she answers difficult usability questions:

When we can’t agree on how to structure the web site, what we do is cre-
ate two or three versions, with different paths and page layouts. We then
do usability testing with several target users. It turns out that there is
never one design that stands out above the others. Instead, we find that
some features from each design are good, and some are rather poor. We
put together the best features of all the options, and retest. Invariably we
get a far better usability score with the combination. We’re thinking that
we should design all of our sites this way.

Set-based development does not replace iterative development, it adds a new
dimension. During early iterations, multiple choices are developed for key fea-
tures; in later iterations, they are merged or narrowed to a single choice.

Communicate Constraints

Set-based development means that you communicate constraints, not solutions.
On the surface, this might seem to be the opposite of using an iterative approach.
Since you are supposed to produce working, deployable code with each iteration,

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 32 Last Updated February 2, 2003

an iteration might seem like a point-based solution, the opposite of set-based
development.

Thinking of an iteration as a point-based solution is a misinterpretation of itera-
tive development. In an iteration, you only implement the minimum amount of
functionality necessary to demonstrate the core concepts of that iteration. For
example, you do not start with an entire database design in the first iteration; you
use a simple persistence layer to deal with the current subset of features. The
design will evolve, and in that sense, the early iteration is a prototype of a piece of
the overall design.

In Chapter 6 we will discuss refactoring, that is, restructuring the code as the
design evolves. Aggressive refactoring is the key to making sure that iterative
development converges on a solution. When an iteration implements ‘frozen’
code that is not available for refactoring, then it is a point-based solution and can
lead to the same circular iterations we saw in point-based meeting scheduling.
When an iteration implements a design that is available for refactoring, then the
design is an instance of a range of options that can be refined later in develop-
ment, similar to a prototype in set-based development.

An iteration should be considered a demonstration of a possible solution; it
should not be considered the only solution. Early iterations should leave wide
latitude for implementing the rest of the system in many possible ways. As
iterations progress and more choices are made, the design space should be gradu-
ally narrowed.

Let the Solution Emerge

Communicating constraints is very useful when tackling a particularly difficult
problem, because it helps assure that the solution is worked out by all concerned.
As the group grapples with the problem, resist the temptation to jump to a
solution; keep the constraints of the problem visible so that the team can discover
the intersection of the design space that will work for all concerned.

The True Story of A Death March Project – Part 4: A Solution Emerges

The team had a disagreement on how to translate the data from the old
database to the new database. It was necessary to use a new database key,
but when customers sent in changes for legacy data, the new key would
not be available to the data entry clerk. There was a raging debate be-

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Tool 6: Set-Based Development

Copyright © 2002 Poppendieck.LLC Page 2 - 33 Last Updated February 2, 2003

tween the people who understood the legacy database structure, those
designing the new database, the people designing the new GUI and the
managers of the data entry clerks.

I had each of the interested parties list out the range of options that
could work in their area, instead of their preferred solution. We had a
series of meetings where each group presented their constraints, rather
than their solutions, to the others. At each meeting, we would toss out
any ideas that were completely unworkable, and then break for a couple
of days while each group reevaluated their options. At first, the options
expanded rather than contracted, because each group found that ideas
from other groups expanded their idea of what might work. Every few
days, the groups met again and repeated the process.

The solution that emerged was novel and very well thought out. It
wasn’t something that anyone would have thought of at the beginning,
but it was probably about the only thing that would have worked. Once
everyone agreed on the approach at a fine level of detail, the development
team mounted a massive effort to implement it quickly. Despite the
many changes involved, this was one area of the code that worked from
the first day it was released.

 – Mary

Try This

1. Take your most difficult problem and devise a way to increase feedback:

a. Increase the feedback of development teams to management by asking
each team at the end of each iteration:

i. Was the team properly staffed for this iteration?

ii. Were there any needed resources that were not forthcoming?

iii. How can things be changed to make things go better and faster?

iv. What is getting in the way?

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Try This

Copyright © 2002 Poppendieck.LLC Page 2 - 34 Last Updated February 2, 2003

b. Increase the feedback of customers to development teams by holding a
customer focus group at the end of each iteration. Ask questions such as:

i. How well does this section solve the problem it was meant to solve?

ii. How could it be improved?

iii. How does this iteration affect your view of what you need?

iv. What do you need to put this part of the system into production?

c. Increase the feedback of the product to the development team by:

i. Having the team write and run unit tests as they write the code.

ii. Having the testing team write and run acceptance tests as the devel-
opers work on the code.

d. Increase the feedback within the team by:

i. Making testers an integral part of the development team

ii. Involving operations people at the beginning of the project

iii. Establishing the policy that the development team maintains the
product

2. Start iterations with a negotiation session between customers and developers.
Customers should indicate which features are the highest priority and devel-
opers should select and commit to only those features from the top of the
priority list which they can realistically expect to complete in the iteration
time-box.

3. Make a progress chart for your current project so the team can see what
needs to be done and everyone can see how the project is converging.

4. If you divide a system across multiple teams, make every effort to have a
divisible architecture which allows teams to work on their own areas as inde-
pendently as possible. Find ways for multiple teams to synchronize as often
as possible by integrating their code and running automated tests.

Lean Development Thinking Tools for Agile Software Development Leaders

Chapter 2 – Amplify Learning Try This

Copyright © 2002 Poppendieck.LLC Page 2 - 35 Last Updated February 2, 2003

5. If stratus teams work for machine interfaces, consider them four user inter-
faces also. If you have several teams working on different components of a
system, consider forming strata teams focused on user interfaces that cross
components.

6. Find your toughest outstanding development problem and have the devel-
opment team come up with three options on how to solve it. Instead of
choosing one of the solutions, have the team explore all three options at the
same time.

